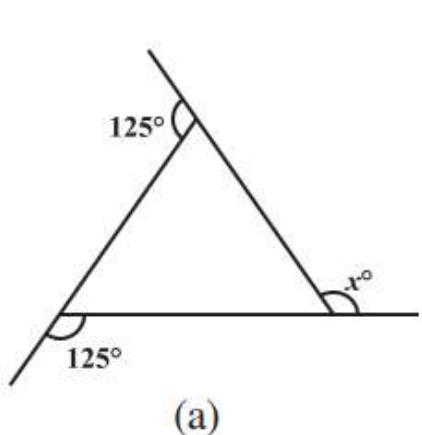
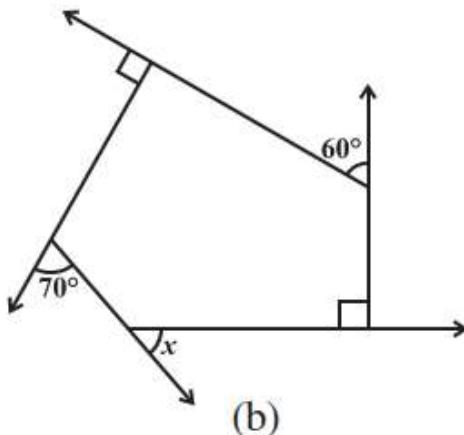


Understanding Quadrilaterals: Exercise 3.2

Q.1 Find x in the following figures.



Sol. (a) Since, sum of all exterior angles of any polygon = 360°

$$\text{So, } 125^\circ + 125^\circ + x = 360^\circ$$

$$250^\circ + x = 360^\circ$$

$$x = 360^\circ - 250^\circ = 110^\circ$$

(b) Since, sum of all exterior angles of any polygon = 360°

$$\text{So, } 60^\circ + 90^\circ + 70^\circ + x + 90^\circ = 360^\circ$$

$$310^\circ + x = 360^\circ$$

$$x = 360^\circ - 310^\circ = 50^\circ$$

Q.2 Find the measure of each exterior angle of a regular polygon of

Sol. (i) Since, sum of all exterior angles of any polygon = 360°

And for any regular polygon, the measure of each exterior angle will be same.

So, measure of each exterior angle for a regular polygon with 9 sides = $\frac{360^\circ}{9} = 40^\circ$

(ii) Since, sum of all exterior angles of any polygon $\equiv 360^\circ$

And for any regular polygon, the measure of each exterior angle will be same.

So, measure of each exterior angle of a regular polygon with 15 sides = $\frac{360^\circ}{15} = 24^\circ$

Q.3 How many sides does a regular polygon have if the measure of an exterior angle is 24° ?

Sol. Since, as we now that sum of all exterior angles of any polygon = 360°

and measure of an exterior angle = 24°

So, number of sides of the regular polygon will be $= \frac{360^\circ}{24^\circ} = 15$

Q.4 How many sides does a regular polygon have if each of its interior angles is 165° ?

Sol. Given: Each of interior angles of polynomial = 165°

So, the exterior angle = $(180^\circ - 165^\circ) = 15^\circ$

Since, sum of all exterior angles of any polygon = 360°

So, number of sides of the regular polygon = $\frac{360^\circ}{15^\circ} = 24$

Q.5 (a) Is it possible to have a regular polygon with measure of each exterior angle as 22° ?

(b) Can it be an interior angle of a regular polygon? Why?

Sol. (a) It is not possible to have a regular polygon with measure of each exterior angle as 22° . Because sum of all exterior angles of any polygon is 360° . So, each exterior angle has to be multiple of 360° . Given exterior angle as 22° which is not the multiple of 360° .

Thus such polygon is not possible.

(b) It is not possible to have a regular polygon with measure of interior angle as 22° . As we know that sum of all exterior angles of any polygon is 360° .

Since, interior angle = 22°

So, exterior angle will be = $180^\circ - 22^\circ = 158^\circ$

Since, 158° is not the multiple of 360° .

Thus, such polygon is not possible.

Q.6 (a) What is the minimum interior angle possible for a regular polygon? Why?

(b) What is the maximum exterior angle possible for a regular polygon?

Sol. (a) Since, a regular polygon with lowest number of equal sides = 3 (equilateral triangle).

And each angle of equilateral triangle = 60°

As we know we that sum of all the angles of a triangle = 180°

So, $x + x + x = 180^\circ$

$$3x = 180^\circ$$

$$x = 60^\circ$$

Thus, minimum interior angle possible for a regular polygon = 60° .

(b) Since, a regular polygon with lowest possible number of sides = 3.

And sum of all exterior angles of any polygon = 360°

Therefore, exterior angle of triangle will be = $\frac{360^\circ}{3} = 120^\circ$

Thus, maximum exterior angle possible for a regular polygon = 120°