

Understanding Quadrilaterals: Exercise 3.1

Q.1 Given here are some figures.

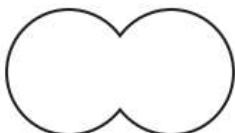
(1)

(2)



(3)

(4)



(5)

(6)

(7)

(8)

Classify each of them on the basis of the following.

- | | |
|---------------------|-------------------------|
| (a) Simple curve | (b) Simple closed curve |
| (c) Polygon | (d) Convex polygon |
| (e) Concave polygon | |

Sol. Classification of figures:

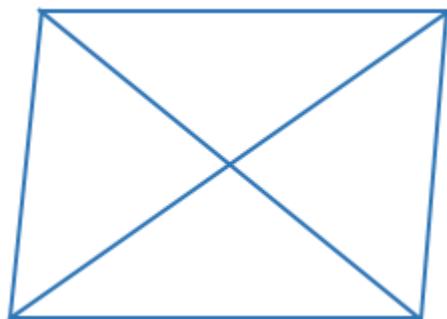
(a) Simple Curve	1, 2, 5, 6 and 7
(b) Simple closed curve	1, 2, 5, 6 and 7
(c) Polygon	1 and 2
(d) Convex polygon	2
(e) Concave polygon	1

Q.2 How many diagonals does each of the following have?

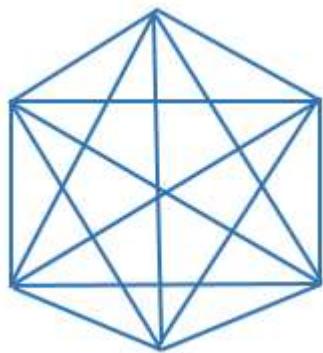
- (a) A convex quadrilateral
(b) A regular hexagon
(c) A triangle

Sol. Number of the diagonals for:

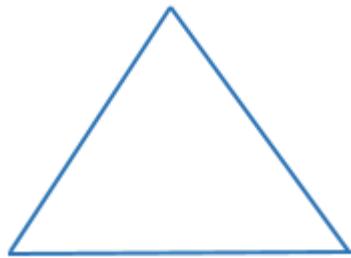
- (a) A convex quadrilateral = two diagonals



- (b) A regular hexagon = 9 diagonals



(c) A triangle = No diagonal

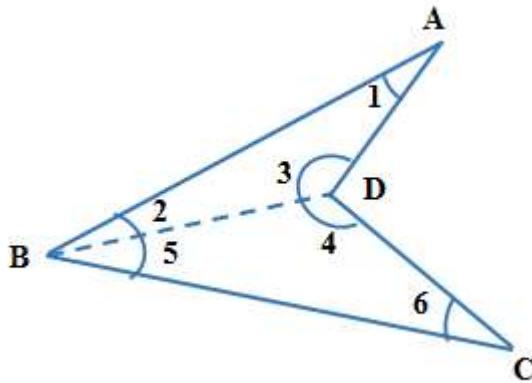


Q.3 What is the sum of the measures of the angles of a convex quadrilateral? Will this property hold if the quadrilateral is not convex?

Sol. The sum of the measures of the angles of a convex quadrilateral is 360° .

Yes. This property will hold true for any quadrilateral, even if the quadrilateral is not convex.

Proof: Let us consider a concave quadrilateral ABCD which is not convex.



Firstly in triangle ABD,

Now in triangle BCD,

Now Adding triangle ABD and triangle BCD, which for concave mirror.

$$\text{So, } \angle 1 + \angle 2 + \angle 3 + \angle 4 + \angle 5 + \angle 6 = 180^\circ + 180^\circ$$

$$\angle 1 + \angle 2 + \angle 3 + \angle 4 + \angle 5 + \angle 6 = 360^\circ$$

Thus, hence proved that sum of the measures of the angles of any quadrilateral is 360° .

Q.4 Examine the table. (Each figure is divided into triangles and the sum of the angles deduced from that.)

Figure				
Side	3	4	5	6
Angle sum	180°	$2 \times 180^\circ$ $= (4 - 2) \times 180^\circ$	$3 \times 180^\circ$ $= (5 - 2) \times 180^\circ$	$4 \times 180^\circ$ $= (6 - 2) \times 180^\circ$

What can you say about the angle sum of a convex polygon with number of sides?

- (a) 7 (b) 8 (c) 10 (d) n

Sol. Since, from the table, it is clearly visible that the angle sum for any convex polygon of sides 'n' = $(n - 2) \times 180^\circ$. Where n, number of sides of the polygon.

Thus, the angle sum of a convex polygon with given number of sides will be:

- (a) $(7 - 2) \times 180^\circ = 900^\circ$
 (b) $(8 - 2) \times 180^\circ = 1080^\circ$
 (c) $(10 - 2) \times 180^\circ = 1440^\circ$
 (d) $(n - 2) \times 180^\circ$

Q.5 What is a regular polygon?

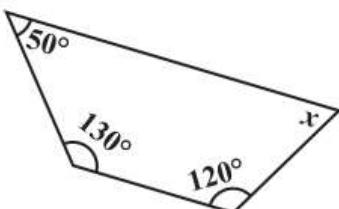
State the name of a regular polygon of:

- (i) 3 sides (ii) 4 sides (iii) 6 sides

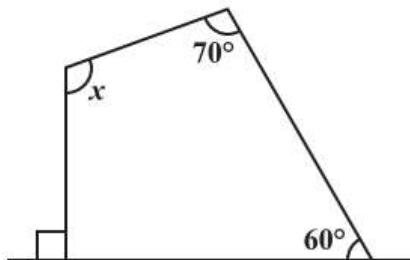
Sol. A polygon having both equiangular and equilateral is called a regular polygon. This polygon has sides of equal length and angle of equal measures.

- (i) A regular polygon of 3 sides: **Triangle**
 (ii) A regular polygon of 4 sides: **Quadrilateral**
 (iii) A regular polygon of 6 sides: **Hexagon**

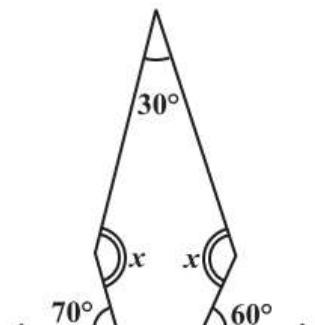
Q.6 Find the angle measure x in the following figures.



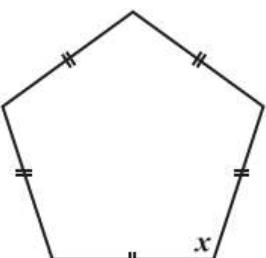
(a)



(b)



(c)



(d)

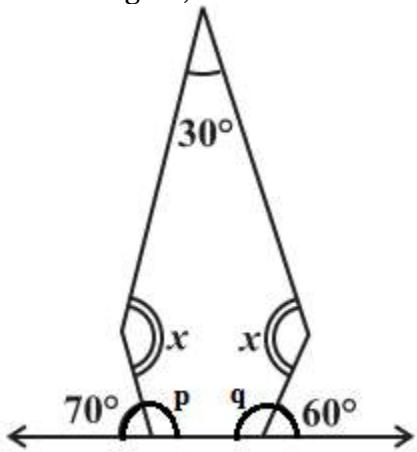
Sol. (a) Since, sum of the measure of all interior angles of a quadrilateral is 360° .
 So, $50^\circ + 130^\circ + 120^\circ + x = 360^\circ$ (By using the angle sum property of a quadrilateral)

$$\begin{aligned}300^\circ + x &= 360^\circ \\x &= 360^\circ - 300^\circ \\x &= 60^\circ\end{aligned}$$

(b) Since, sum of the measure of all interior angles of a quadrilateral is 360° .
 So, $60^\circ + 70^\circ + x = 360^\circ$ (By using the angle sum property of a quadrilateral)

$$\begin{aligned}220^\circ + x &= 360^\circ \\x &= 360^\circ - 220^\circ \\x &= 140^\circ\end{aligned}$$

(c) Since, from the figure,



$$70^\circ + p = 180^\circ \text{ (Linear pair angles)}$$

$$p = 110^\circ$$

$$60^\circ + q = 180^\circ \text{ (Linear pair angles)}$$

$$q = 120^\circ$$

Since, sum of measure of interior angles of a pentagon is 540°

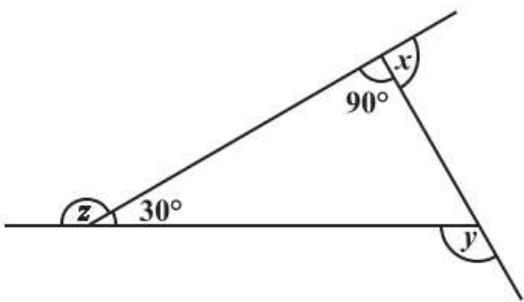
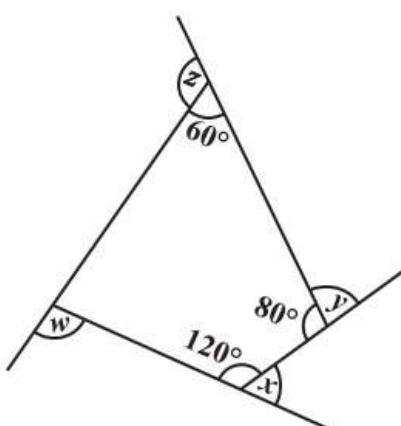
$$\text{So, } 120^\circ + 110^\circ + 30^\circ + x + x = 540^\circ$$

$$\begin{aligned}260^\circ + 2x &= 540^\circ \\2x &= 280^\circ \\x &= 140^\circ\end{aligned}$$

(d) Since, sum of measure of interior angles of a pentagon is 540°

$$\begin{aligned}5x &= 280^\circ \\x &= 280^\circ / 5 = 108^\circ\end{aligned}$$

Q.7



(a) Find $x + y + z$

Sol. (a) Since, as we know that sum of linear pair of angles is 180° .

$$\text{So, } 90^\circ + x = 180^\circ$$

$$x = 180^\circ - 90^\circ$$

$$x = 90^\circ$$

In the same way, $z + 30^\circ = 180^\circ$

$$z = 180^\circ - 30^\circ$$

$$z = 150^\circ$$

Now, we use the exterior angle property,

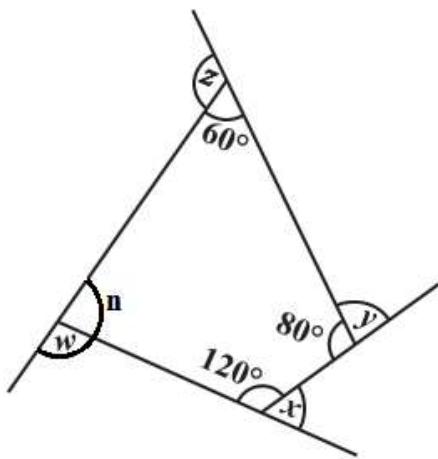
$$\text{Also, } y = 90^\circ + 30^\circ$$

$$= 120^\circ$$

$$\text{Then, } x + y + z = 90^\circ + 120^\circ + 150^\circ$$

$$= 360^\circ$$

(b)



Since, sum of the measure of all interior angles of a quadrilateral is 360° .

$$60^\circ + 80^\circ + 120^\circ + n = 360^\circ \text{ (By using the angle sum property of a quadrilateral)}$$

$$260^\circ + n = 360^\circ$$

$$n = 360^\circ - 260^\circ$$

$$n = 100^\circ$$

Now, $w + 100^\circ = 180^\circ$ (Since, sum of linear pair of angles is 180°)

$$w = 80^\circ$$

$x + 120^\circ = 180^\circ$ (Since, sum of linear pair of angles is 180°)

$$x = 60^\circ$$

$y + 80^\circ = 180^\circ$ (Since, sum of linear pair of angles is 180°)

$$y = 100^\circ$$

$z + 60^\circ = 180^\circ$ (Since, sum of linear pair of angles is 180°)

$$z = 120^\circ$$

$$\text{So, } x + y + z + w = 60^\circ + 100^\circ + 120^\circ + 80^\circ$$

$$\text{Thus, } x + y + z + w = 360^\circ$$