Triangles: Exercise - 6.4

Q.1 Let $\triangle ABC \sim \triangle DEF$ and their areas be, respectively, 64 cm² and 121 cm². If EF = 15.4 cm, Find BC. Sol. Given: Area ($\triangle ABC$)/Area ($\triangle DEF$) = BC²/EF²

⇒ 64/121 = BC²/(15.4)² ⇒ 8/11 = BC/15.4 (By taking square root both sides.) ⇒ BC = $(\frac{8}{11} \times 15.4)$ cm = 11.2 cm Thus BC =11.2 cm.

Q.2 Diagonals of a trapezium ABCD with AB || DC intersect each other at the point O. If AB = 2 CD, find the ratio of the areas of triangles AOB and COD. Sol.

Given: In a trapezium ABCD, AB ||DC and AB = 2CD Now, In Δ AOB and Δ COD,

 $\angle AOB = \angle COD$ (Vertically opposite angles) and, $\angle OAB = \angle OCD$ (Alternate angles) So, from AA-criterion of similarity, $\triangle AOB \sim \triangle COD$

Therefore

 $\Rightarrow \text{Area} (\Delta \text{AOB})/\text{Area} (\Delta \text{COD}) = \text{AB}^2/\text{DC}^2$ $\Rightarrow \text{Area}(\Delta \text{AOB})/\text{Area}(\Delta \text{COD}) = (2\text{DC})^2/\text{DC}^2 \text{ (Since AB = 2\text{CD})}$ = 4/1Hence, area (ΔAOB) : area (ΔCOD) = 4 : 1

Q.3 In figure, ABC and DBC are two triangles on the same base BC. If AD intersects BC at O, show that $ar(\Delta ABC)/ar(\Delta DBC) = AO/DO$

Sol. Given: Two triangles, $\triangle ABC$ and $\triangle DBC$ which have same base BC To prove: Area ($\triangle ABC$)/Area ($\triangle DBC$) = AO/DO Construction: We need to draw AE \perp BC and DF \perp BC in given figure.

Proof: In $\triangle AOE$ and $\triangle DOF$, we have $\angle AEO = \angle DFO = 90 \circ$ (Since, in construction of $AE \perp BC$ and $DF \perp BC$)

 $\angle AOE = \angle DOF$ (Vertically opposite angles) So, from AA-criterion of similarity, $\Delta AOE \sim \Delta DOF$ Then, $\frac{\frac{1}{2} x BC x AE}{\frac{1}{2} x r}$ AE/DF = AO/OD(i) ⇒ Now, Area(ΔABC)/Area(ΔDBC) = \Rightarrow Since, AE/DF = AO/OD from (i) So, Area(ΔABC)/Area(ΔDBC) = AO/OD...... Hence Proved. Q.4 If the areas of two similar triangles are equal, prove that they are congruent. **Sol.** Given: Two triangles, $\triangle ABC$ and $\triangle DEF$ and $\triangle ABC \sim \triangle DEF$ and their areas, Area (ΔABC) = Area (ΔDEF) To prove: $\triangle ABC \cong \triangle DEF$ D Proof : Since, $\triangle ABC \sim \triangle DEF$ Then, $\Rightarrow \angle A = \angle D, \angle B = \angle E \text{ and } \angle C = \angle F$ and, AB/DE = BC/EF = AC/DFTo prove $\triangle ABC \cong \triangle DEF$, we need to prove that AB = DE, BC = EF and AC = DFSince, Area ($\triangle ABC$) = Area ($\triangle DEF$) \Rightarrow Area(Δ ABC)/Area(Δ DEF) = 1 $\Rightarrow AB^2/DE^2 = BC^2/EF^2 = AC^2/DF^2 = 1$ \Rightarrow AB/DE = BC/EF = AC/DF = 1 \Rightarrow AB = DE, BC = EF, AC = DF So, from the SSS criterion of congruent, $\Delta ABC \cong \Delta DEF$Hence proved.

Q.5 D, E and F are respectively the mid-points of sides AB, BC and CA of \triangle ABC. Find the ratio of the areas of \triangle DEF and \triangle ABC.

Sol. Given: D, E and F are the mid-points of the sides AB, BC and CA of \triangle ABC respectively.

Since, D and E are the mid-points of the sides AB and BC. So, DE || AC \Rightarrow DE || FC(i) Since, D and F are the mid-points of the sides AB and AC. So, DF || BC \Rightarrow DF || EC(ii) From (i) and (ii), DECF is a parallelogram.

Similarly, ADEF is a parallelogram. Now, in \triangle DEF and \triangle ABC, \angle DEF = \angle A (Opposite angles of ||gm ADEF) and, \angle EDF= \angle C (Opposite angles of ||gm DECF) So, from AA-criterion of similarity, \triangle DEF~ \triangle ABC

then

 \Rightarrow Area(Δ DEF)/Area(Δ ABC) = DE²/AC²

$$=\frac{\frac{1}{2}AC^2}{AC^2}=1/4$$

Thus, Area (ΔDEF) : Area (ΔABC) = 1 : 4.

Q.6 Prove that the ratio of the areas of two similar triangles is equal to the square of the ratio of their corresponding medians. *Sol.*

Q.7 Prove that the area of an equilateral triangle described on one side of a square is equal to half the area of the equilateral triangle described on one of the diagonals. *Sol.*

Given: A square ABCD. Equilateral Δ BEC which has been drawn on side and Equilateral Δ AFC, which has been drawn on one side of the diagonals AC

To prove : Area (ΔBCE) = $\frac{1}{2}$ (Area ΔACF)

Proof : Since, Both the triangles are equilateral triangles. So, being equilateral so similar by AAA criterion of similarity-

 $\Delta BCE \sim \Delta ACF$

Then, \Rightarrow Area (Δ BCE) / Area(Δ ACF) = BC² / AC² \Rightarrow Area(Δ BCE) / Area(Δ ACF) = BC² / ($\sqrt{2}$ BC)² (Since, Diagonal = $\sqrt{2}$ side) \Rightarrow AC = $\sqrt{2}$ BC Thus,

 \Rightarrow Area (\triangle BCE) / Area (\triangle ACF) = $\frac{1}{2}$

Tick the correct answer and justify: Q.8 ABC and BDE are two equilateral triangles such that D is the mid-point of BC. Ratio of the areas of triangles ABC and BDE is (a) 2 : 1 (b) 1 : 2

Sol.

(c) 4 : 1

Since $\triangle ABC$ and $\triangle BDE$ are equilateral. So, being equilateral so similar by AAA criterion of similarity-

ΔABC~ΔBDE(i)

(d) 1:4

⇒ Area(ΔABC) / Area(ΔBDE) = BC² / BD² ⇒ Area(ΔABC) / Area(ΔBDE) = (2BD)² / BD² (Since, D is the mid-point of BC. So, BC = 2BD) Thus ⇒ Area(ΔABC) / Area(ΔBDE) = 4/1

Thus correct Option: (C)

Q.9 Sides of two similar triangles are in the ratio 4 : 9. Areas of these triangles are in the ratio.

(A) 2:3
(B) 4:9
(C) 81:16
(D) 16:81
Sol. Since, as we know that the ratio of the areas of two similar triangles is equal to the ratio of the squares of any two corresponding sides. So, ratio of areas = (4)²: (9)²=16:81
Thus correct Option: (D)