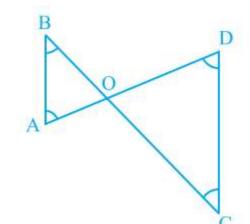


Q.2 In figure, sides AB and AC of \triangle ABC are extended to points P and Q respectively. Also \angle PBC < \angle QCB. Show that AC > AB.

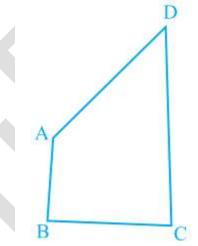
Sol. Given: $\angle PBC < \angle QCB$ By multiplying by '-'both sides, $\Rightarrow -\angle PBC > -\angle QCB$ By adding 180° on both sides, $\Rightarrow 180^{\circ} - \angle PBC > 180^{\circ} - \angle QCB$ Here, $\angle PBC$ and $\angle ABC$ as well as, $\angle QCB$ and $\angle ACB$ are linear pair angles. $\Rightarrow \angle ABC > \angle ACB$ \Rightarrow Thus, AC > AB (Since, side opposite to greater angle is larger.) Hence Proved.

Q.3 In figure, $\angle B < \angle A$ and $\angle C < \angle D$. Show that AD < BC.

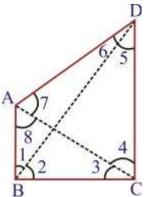


Sol. Given: $\angle B < \angle A$ and $\angle C < \angle D$ So, AO < BO......(i) and OD < OC.....(ii) (Since, side opposite to greater angle is larger.) By adding (i) and (ii), AO + OD < BO + OC \Rightarrow AD < BC......Hence Proved.

Q.4 AB and CD are respectively the smallest and longest sides of a quadrilateral ABCD (see figure). Show that $\angle A > \angle C$ and $\angle B > \angle D$



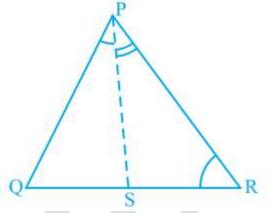
Sol. Given: AB and CD are respectively the smallest and longest sides of a quadrilateral ABCD. Now, join AC and BD.



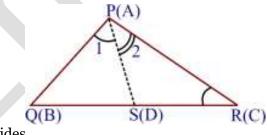
Since, AB is the smallest side of quadrilateral \overrightarrow{ABCD} . So, in \triangle ABC,

Since, BC > AB \Rightarrow So, $\angle 8 > \angle 3 \dots$ (i) (Since, angle opposite to longer side is greater.) Here, CD is the longest side of quadrilateral ABCD. Now, in $\triangle ACD$, CD > AD \Rightarrow So, $\angle 7 > \angle 4$... (ii) (Since, angle opposite to longer side is greater.) By adding (i) and (ii), $\angle 8 + \angle 7 > \angle 3 + \angle 4$ $\Rightarrow \angle A > \angle C$ Now again, in $\triangle ABD$, AD > AB (Because, AB is the shortest side) $\Rightarrow \angle 1 > \angle 6 \dots$ (iii) And in $\triangle BCD$, CD > BC [Since CD is the longest side] $\Rightarrow \angle 2 > \angle 5 \dots (iv)$ By adding (iii) and (iv), $\angle 1 + \angle 2 > \angle 5 + \angle 6$ $\Rightarrow \angle B > \angle D$ Therefore, $\angle A > \angle C$ and $\angle B > \angle D$ Hence Proved.

Q.5 In figure PR > PQ and PS bisects ∠QPR. Prove that ∠PSR > ∠PSQ.



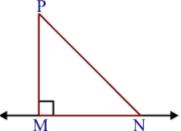
Sol. Given: In \triangle PQR, PR > PQ \Rightarrow So, \angle PQR > \angle PRQ (Since, angle opposite to larger side is greater.)



By adding $\angle 1$ on both sides, $\Rightarrow \angle PQR + \angle 1 > \angle PRQ + \angle 1$ Since, PS is the bisector of $\angle P$. So, $\angle 1 = \angle 2$ $\Rightarrow \angle PQR + \angle 1 > \angle PRQ + \angle 2$ Now, in $\triangle PQS$ and $\triangle PSR$, $\angle PQS + \angle 1 + \angle PSQ = 180^{\circ}$ and $\angle PRS + \angle 2 + \angle PSR = 180^{\circ}$ $\Rightarrow \angle PQS + \angle 1 = 180^{\circ} - \angle PSQ$ and $\angle PRS + \angle 2 = 180^{\circ} - \angle PSR$ So, $180^{\circ} - \angle PSQ > 180^{\circ} - \angle PSR$ $\Rightarrow -\angle PSQ > -\angle PSR$ By adding '-'in both sides, ⇒ ∠PSQ < ∠PSR i.e. ∠PSR > ∠PSQ.....Hence Proved.

Q.6 Show that of all line segments drawn from a given point not on it, the perpendicular line segment is the shortest.

Sol. Suppose, P is any point not on the straight line *l*. PM is perpendicular on line *l* and N is any point on line *l* other than M.



Now, In Δ PMN, Since, $\angle M = 90^{\circ}$ $\Rightarrow \angle MPN + \angle PNM = 90^{\circ}$ $\Rightarrow \angle P + \angle N = 90^{\circ}$ $\Rightarrow \angle N < 90^{\circ}$ $\Rightarrow \angle N < \angle M$ $\Rightarrow PM < PN$ (Since, side opposite to greater angle is larger.) Thus, PM is the shortest of all line segments from point P to line *l*.