

(i) $\triangle ABD \cong \triangle BAC$ (ii) BD = AC(iii) $\angle ABD = \angle BAC$

B C D

Sol. In triangles $\triangle ABD$ and $\triangle BAC$, AD = BC (Given) $\angle DAB = \angle CBA$ (Given) AB = AB (Common side) So, from SAS criterion of congruence,

(i) $\triangle ABD \cong \triangle BAC$ Hence Proved.

(ii) \Rightarrow BD = AC (Since, corresponding parts of congruent triangles)

(iii) and, $\angle ABD = \angle BAC$, (Since, corresponding parts of congruent triangles)

Q.3 AD and BC are equal perpendiculars to a line segment AB (see figure). Show that CD bisects AB.

B

Sol. Since, AB and CD intersect each other at O. So, $\angle AOD = \angle BOC \dots$ (i) (Vertically opposite angles) Now, In Triangles $\triangle AOD$ and $\triangle BOC$, $\angle AOD = \angle BOC$ (From eq. (i)) Since, AD and BC are equal perpendiculars to a line segment AB $\angle DAO = \angle OBC$ (Each = 90°) and , AD = BC (Given) So, from AAS congruence criterion, $\triangle AOD \cong \triangle BOC$ $\Rightarrow OA = OB$ (Since, corresponding parts of congruent triangles) Therefore. O is the mid- point of AB. Thus, CD bisects AB....... Hence Proved.

Q.4 *l* and m are two parallel lines intersected by another pair of parallel lines p and q (see figure). Show that $\triangle ABC \cong \triangle CDA$.

Sol. Given that *l* and m are two parallel lines intersected by another pair of parallel lines p and q. So, AD || BC and AB || CD It means ABCD is a parallelogram. So, AB = CD and BC = AD Now, in Triangles \triangle ABC and \triangle CDA, AB = CD (Already Proved) BC = AD (Proved above) and AC = AC (Common Side) So, from SSS criterion of congruence. $\triangle ABC \cong \triangle CDA$Hence Proved.

Q.5 Line *l* is the bisector of an angle A and B is any point on l. BP and BQ are perpendiculars from B to the arms of ∠A (see figure). Show that:
(i) ΔAPB ≅ ΔAQB
(ii) BP = BQ or B is equidistant from the arms of ∠A.

Sol. Firstly, In triangles $\triangle APB$ and $\triangle AQB$, $\angle APB = \angle AQB$ (Given, each = 90°) $\angle PAB = \angle QAB$ [Since, *l* bisects $\angle PAQ$] AB = AB (Common side) So, from AAS congruence criterion, (i) $\triangle APB \cong \triangle AQB$Hence Proved (ii) And BP = PQ (Corresponding parts of congruent triangles) It means that B is equidistant from the arms of $\angle A$.

Q.6 In figure AC = AE, AB = AD and \angle BAD = \angle EAC. Show that BC = DE.

E

D

Sol. Firstly, In triangles $\triangle ABC$ and $\triangle ADE$, AB = AD (Given) Since, $\angle BAD = \angle EAC$ Add $\angle DAC$ both the sides, $\Rightarrow \angle BAD + \angle DAC = \angle EAC + \angle DAC$ So, $\angle BAC = \angle DAE$ and, AC = AE (Given) So, from SAS criterion of congruence, $\triangle ABC \cong \triangle ADE$ $\Rightarrow BC = DE$ (Corresponding parts of congruent triangles)

В

Q.7 AB is a line segment and P is its mid- point. D and E are points on the same side of AB such that $\angle BAD = \angle ABE$ and $\angle EPA = \angle DPB$ (see figure). Show that -(i) $\triangle DAP \cong \triangle EBP$ (ii) AD = BE.

Sol. Given: $\angle EPA = \angle DPB$ Add $\angle DPE$ both sides, $\Rightarrow \angle EPA + \angle DPE = \angle DPB + \angle DPE$ $\Rightarrow \angle DPA = \angle EPB$(i) Now, in triangles $\triangle EBP$ and $\triangle DAP$, $\angle EPB = \angle DPA$ (From eq. (i)) BP = AP (Given) and, $\angle EBP = \angle DAP$ (Given) So, from ASA criterion of congruence, $\triangle EBP \cong \triangle DAP$ $\Rightarrow BE = AD$ AD = BE (Corresponding parts of congruent triangles) Hence Proved.

Q.8 In right triangle ABC, right angled at C, M is the mid-point of hypotenuse AB. C is joined to M and produced to a point D such that DM = CM. Point D is joined to point B (see figure). Show that:

```
(i) ΔAMC ≅ ΔBMD
(ii) ∠DBC is a right angle
(iii) ΔDBC ≅ ΔACB
```

```
(iv) CM = \frac{1}{2} AB
```


(ii) Now, $\triangle AMC \cong \triangle BMD$ \Rightarrow BD = CA and \angle BDM = \angle ACM..... (i) (Corresponding parts of congruent triangles) Therefore, transversal line CD intersects CA and BD at C and D respectively. \angle BDM = \angle ACM (alternate interior angles). So, BD || CA. $\Rightarrow \angle CBD + \angle BCA = 180^{\circ}$ (Since sum of consecutive interior angles are supplementary) $\Rightarrow \angle CBD + 90^\circ = 180^\circ$ (Since, $\angle BCA = 90^\circ$) $\Rightarrow \angle CBD = 180^{\circ} - 90^{\circ}$ $\Rightarrow \angle DBC = 90^{\circ}$Hence Proved. (iii) In triangles, ΔDBC and ΔACB , BD = CA (From eq. (i)) \angle DBC = \angle ACB (Since, Each = 90° (Already proved)) BC = BC (Common Side) So, from SAS criterion of congruence, $\Delta DBC \cong \Delta ACB$Hence Proved. (iv) CD = AB (Corresponding parts of congruent triangles) $\Rightarrow \frac{1}{2}$ CD = $\frac{1}{2}$ AB \Rightarrow CM = $\frac{1}{2}$ AB.....Hence Proved.