

Squares and Square Roots: Exercise 6.2

Q.1 Find the square of the following numbers.

(i) 32 (ii) 35 (iii) 86 (iv) 93 (v) 71 (vi) 46

Sol. (i) Given number = 32

So, square of 32:

$$\begin{aligned}32^2 &= (30 + 2)^2 \\&= (30 + 2) \times (30 + 2) \\&= 30(30 + 2) + 2(30 + 2) \\&= 30^2 + 30 \times 2 + 2 \times 30 + 2^2 \\&= 900 + 60 + 60 + 4 \\&= 1024\end{aligned}$$

(ii) Given number = 35

So, square of 35:

$$\begin{aligned}35^2 &= (30 + 5)^2 \\&= (30 + 5) \times (30 + 5) \\&= 30(30 + 5) + 5(30 + 5) \\&= 30^2 + 30 \times 5 + 5 \times 30 + 5^2 \\&= 900 + 150 + 150 + 25 \\&= 1225\end{aligned}$$

(iii) Given number = 86

So, square of 86:

$$\begin{aligned}86^2 &= (80 + 6)^2 \\&= (80 + 6) \times (80 + 6) \\&= 80(80 + 6) + 6(80 + 6) \\&= 80^2 + 80 \times 6 + 6 \times 80 + 6^2 \\&= 6400 + 480 + 480 + 36 \\&= 7396\end{aligned}$$

(iv) Given number = 93

So, square of 93:

$$\begin{aligned}93^2 &= (90 + 3)^2 \\&= (90 + 3) \times (90 + 3) \\&= 90(90 + 3) + 3(90 + 3) \\&= 90^2 + 90 \times 3 + 3 \times 90 + 3^2 \\&= 8100 + 270 + 270 + 9 \\&= 8649\end{aligned}$$

(v) Given number = 71

So, square of 71:

$$\begin{aligned}71^2 &= (70 + 1)^2 \\&= (70 + 1) \times (70 + 1) \\&= 70(70 + 1) + 1(70 + 1) \\&= 70^2 + 70 \times 1 + 1 \times 70 + 1^2 \\&= 4900 + 70 + 70 + 1 \\&= 5041\end{aligned}$$

(vi) Given number = 46

So, square of 46:

$$\begin{aligned}46^2 &= (40 + 6)^2 \\&= (40 + 6) \times (40 + 6) \\&= 40(40 + 6) + 6(40 + 6) \\&= 40^2 + 40 \times 6 + 6 \times 40 + 6^2\end{aligned}$$

$$= (9^2 + 1)$$

$$= 81 + 1$$

$$= 82$$

Therefore, the Pythagorean triplet = (18, 80, 82)

EduGeeks