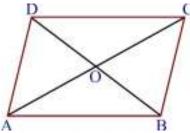


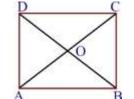
Q.3 Show that if the diagonals of a quadrilateral bisect each other at right angles, then it is a rhombus.

Sol. Let ABCD be a quadrilateral in which the diagonals AC and BD bisect each other at right angle at point O i.e. AO = OC, BO = OD and $AC \perp BD$.



To prove: Quadrilateral ABCD is a rhombus. **Proof:** Here, diagonals AC and BD of quadrilateral ABCD bisect each other at right angles. So, diagonal AC is the perpendicular bisector of BD. \Rightarrow Therefore, A and C both are equidistant from B and D. \Rightarrow AB = AD and CB = CD ... (i) Also, diagonal BD is the perpendicular bisector of AC. \Rightarrow Therefore, B and D both are equidistant from A and C. \Rightarrow AB = BC and AD = DC ... (ii) From (i) & (ii), AB = BC = CD = ADTherefore, ABCD is a quadrilateral in which diagonals bisect each other at right angles and all four sides are equal. Thus, ABCD is a rhombus. Hence Proved. Another way: **Proof:** Firstly, we need to prove that ABCD is a || gm. So, In $\triangle AOD$ and COB, AO = OC(Given) OD = OB(Given) ∠AOD = ∠COB (Vertically opposite angles) So, from SAS criterion of congruence, $\Delta AOD \cong \Delta COB$ $\Rightarrow \angle OAD = \angle OCB$... (i) (Corresponding parts of congruent triangles) Since, line AC intersects AD and BC at A and C respectively such that $\angle OAD = \angle OCB$ (From eq.(i)) (Alternate interior angles) So, AD || BC Similarly, AB || CD Thus, ABCD is a parallelogram. Now, we need to prove that ||gm ABCD is a rhombus. In $\triangle AOD$ and $\triangle COD$, OA = OC(Given) $\angle AOD = \angle COD$ (Both diagonal intersect at right angle) OD = OD (Common side) So, from SAS criterion of congruence $\Delta AOD \cong \Delta COD$... (ii) (Corresponding parts of congruent triangles) \Rightarrow AD = CD Now, ABCD is a || gm (Already Proved) \Rightarrow AB = CD and AD = BC (Opposite sides of a || gm are equal) AB = CD = AD = BC (From eq. (ii)) \Rightarrow Thus, quadrilateral ABCD is a rhombus. Hence Proved.

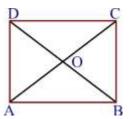
Q.4 Show that the diagonals of a square are equal and bisect each other at right angles. *Sol.* Let ABCD be a square.



To prove: AC = BD, $AC \perp BD$ and OA = OC, OB = OD. **Proof:** Since, ABCD is a square. So, AB || DC and AD || BC. From figure, AB || DC and transversal AC intersects both at A and C respectively. So, $\angle BAC = \angle DCA$ (Alternate interior angles) $\Rightarrow \angle BAO = \angle DCO \dots (i)$ Again AB || DC and BD intersects both at B and D respectively. So, $\angle ABD = \angle CDB$ (Alternate interior angles) $\Rightarrow \angle ABO = \angle CDO$... (ii) Now, in $\triangle AOB$ and $\triangle COD$, $\angle BAO = \angle DCO$ (From eq. (i))AB = CD (Since, opposite sides of a ||gm are equal) and $\angle ABO = \angle CDO$ (From eq. (ii)) So, from ASA congruence criterion, $\Delta AOB \cong \Delta COD$ \Rightarrow OA = OC and OB = OD (Corresponding parts of congruent triangles) Thus, the diagonals bisect each other. Now, In \triangle ADB and \triangle BCA, AD = BC(Sides of a square) $\angle BAD = \angle ABC$ (Each 90°) and AB = BA(Common side) So, from SAS criterion of congruence, $\Delta ADB \cong \Delta BCA$ \Rightarrow AC = BD (Corresponding parts of congruent triangles) Thus, the diagonals are equal. Now, in $\triangle AOB$ and $\triangle AOD$, (Diagonals of || gm bisect each other) OB = ODAB = AD(Sides of a square) and, AO = AO(Common Side) So, from SSS criterion of congruence, $\Delta AOB \cong \Delta AOD$ $\Rightarrow \angle AOB = \angle AOD$(iii) (Corresponding parts of congruent triangles) But $\angle AOB + \angle AOD = 180^{\circ}$ $\Rightarrow \angle AOB + \angle AOB = 180^{\circ}$ $\Rightarrow 2 \angle AOB = 180^{\circ}$ $\Rightarrow \angle AOB = 90^{\circ}$ So, $\angle AOB = \angle AOD = 90^{\circ}$ \Rightarrow AO \perp BD and AC \perp BD Thus, diagonals intersect at right angles. Hence Proved.

Q.5 Show that if the diagonals of a quadrilateral are equal and bisect each other at right, angles then it is a square.

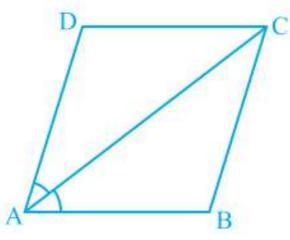
Sol. Let ABCD be a quadrilateral in which the diagonals AC = BD, AO = OC, BO = OD and $AC \perp BD$.



To prove: Quadrilateral ABCD is a square.

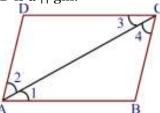
Proof: Firstly, we need to prove that ABCD is a parallelogram. So, In $\triangle AOD$ and $\triangle COB$, (Both diagonals bisect each other) AO = OCOD = OB(Both diagonals bisect each other) (Vertically opposite Angles) ∠AOD = ∠COB So, from SAS criterion of congruence, $\Delta AOD \cong \Delta COB$ $\Rightarrow \angle OAD = \angle OCB$ (i) (Corresponding parts of congruent triangles) Line AC intersects AD and BC at A and C respectively, $\angle OAD = \angle OCB$ (From eq. (i)) (Alternate interior angles) So, AD || BC And similarly, AB || CD Therefore, ABCD is a parallelogram. Now, we need to prove that it is a square. So, In $\triangle AOB$ and $\triangle AOD$, AO = AO(Common side) (Both diagonals bisect each other at right angle) ∠AOB = ∠AOD and OB = OD(Both diagonals of a || gm bisect each other) SO, from SAS criterion of congruence, $\Delta AOB \cong \Delta AOD$ (Corresponding parts of congruent triangles) $\Rightarrow AB = AD$ But AB = CD and AD = BC (Opposite sides of a || gm) So, AB = BC = CD = AD ... (ii) Now, in $\triangle ABD$ and $\triangle BAC$, AB = BA(Opposite sides of a ||gm) AD = BCand BD = AC(Equal diagonals) So, from SSS criterion of congruence, $\Delta ABD \cong \Delta BAC$ \Rightarrow Thus, $\angle DAB = \angle CBA$ (Corresponding parts of congruent triangles) Hence Proved.

Q.6 Diagonal AC of parallelogram ABCD bisects ∠A (see figure). Show that (i) it bisects ∠C also (ii) ABCD is a rhombus.



Sol.

(i) Given: A parallelogram ABCD and diagonal AC bisects $\angle A$. To prove: AC bisects $\angle C$. Proof: Here, ABCD is a || gm.

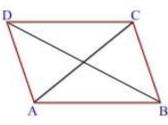


So, AB || DC and AC intersects them, So, $\angle 1 = \angle 3$(i) (Alternate interior angles) Now, again AD || BC and AC intersects them So, $\angle 2 = \angle 4$(ii) (Alternate interior angles) Since, AC is the bisector of $\angle A$ So, $\angle 1 = \angle 2$ (iii) So, from (i), (ii) and (ii), $\angle 3 = \angle 4$ Thus, AC bisects $\angle C$. Hence Proved.

(ii) To prove: ABCD is a rhombus. From part (i): Equation (i), (ii) and (iii) Give $\angle 1 = \angle 2 = \angle 3 = \angle 4$ Now, in $\triangle ABC$, $\angle 1 = \angle 4$ \Rightarrow BC = AB (Sides opposite to equal angles in a triangle) Similarly, in $\triangle ADC$, AD = DCAlso, ABCD is a||gm So, AB = CD, AD = BC (Opposite sides of a ||gm) By combining, AB = BC = CD = DA Thus, ABCD is a rhombus. Hence Proved.

Q.7 ABCD is a rhombus. Show that diagonal AC bisects $\angle A$ as well as $\angle C$ and diagonal BD bisects $\angle B$ as well as $\angle D$.

Sol. Given: Quadrilateral ABCD is a rhombus.



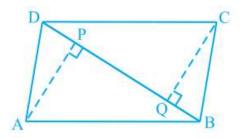
To prove: (i) Diagonal AC bisects ∠A as well ∠C
(ii) Diagonal BD bisects ∠B as well as ∠D
Proof: Firstly, In ΔADC, AD = DC (Sides of a rhombus)
⇒ ∠DAC = ∠DCA ... (i) (Angles opposite to equal sides of a triangle)
Side AB || DC and AC intersects them
So, ∠BCA = ∠DAC ... (ii) (Alternate interior angles)
So, from (i) and (ii),

 $\angle DCA = \angle BCA$ \Rightarrow Thus, AC bisects $\angle C$ Now, In $\triangle ABC$, AB = BC(Sides of a rhombus) $\Rightarrow \angle BCA = \angle BAC$ (iii) (Angles opposite to equal sides of a triangle) So, from (ii) and (iii), $\angle BAC = \angle DAC$ \Rightarrow Thus, AC bisects $\angle A$ Thus, diagonal AC bisects $\angle A$ as well as $\angle C$. In the same way, diagonal BD bisects $\angle B$ as well as $\angle D$ Hence Proved. Q.8 ABCD is a rectangle in which diagonal AC bisects $\angle A$ as well as $\angle C$. Show that: (i) ABCD is a square (ii) diagonal BD bisects $\angle B$ as well as $\angle D$ **Sol. Given:** ABCD is a rectangle in which diagonal AC bisects $\angle A$ as well as $\angle C$. R To prove: (i) ABCD is a square. (ii) Diagonal BD bisects $\angle B$ as well as $\angle D$. **Proof : (i)** Here, AC bisects $\angle A$ as well as $\angle C$ in the rectangle ABCD. So, $\angle A = \angle C$ (All angles of a rectangle are 90°) = 45°) And, $\angle 1 = \angle 2 = \angle 3 = \angle 4$ (Since, AC bisects the $\angle A$ and $\angle C$, Each = So, In \triangle ADC, $\angle 2 = \angle 4$ \Rightarrow Therefore, AD = CD (Since, sides opposite to equal angles) Hence, the rectangle ABCD is a square. Hence Proved. (ii) Since, In square ABCD, diagonals bisect the angles. So, BD bisects $\angle B$ as well as $\angle D$. Hence Proved. Q.9 In parallelogram ABCD, two points P and Q are taken on diagonal BD such that DP = BQ (see figure). Show that: (i) $\triangle APD \cong \triangle CQB$ (ii) AP = CO(iii) $\triangle AQB \cong \triangle CPD$ (v) APCQ is a parallelogram (iv) AQ = CP

Sol. Given: ABCD is a parallelogram. P and Q are the points on the diagonal BD and DP = BQ.

To prove: (i) $\triangle APD \cong \triangle CQB$ (ii) AP = CQ(iii) $\triangle AOB \cong \triangle CPD$ (iv) AQ = CP (v) APCQ is a parallelogram. Construction: Firstly, join AC which intersect BD at O. **Proof:** Since, diagonals of a parallelogram bisect each other. So, AC and BD bisect each other at O. So, OB = ODBut BQ = DP (Given) $\Rightarrow OB - BQ = OD - DP$ $\Rightarrow OO = OP$ In quadrilateral APCQ, OQ = OP and OA = OC. So, diagonals AC and PQ bisects each other. (v) Thus, APCO is a parallelogram...... Hence Proved. (i) Now, In \triangle APD and \triangle CQB, (Opposite sides of a ||gm ABCD) AD = CBAP = CO(Opposite sides of a ||gm APCQ) DP = BO(Given) So, from SSS criterion of congruence, $\Delta APD \cong \Delta CQB$Hence Proved. (ii) AP = CQ (Opposite sides of a ||gm APCQ)...... Hence Proved. (iii) Now, In $\triangle AQB$ and $\triangle CPD$, (Opposite sides of a ||gm ABCD) AB = CDAQ = CP(Opposite sides of a ||gm APCQ) BQ = DP(Given) So, from SSS criterion of congruence, $\Delta AQB \cong \Delta CPD$ Hence Proved. (Opposite sides of a ||gm APCQ)......Hence Proved. (iv) AQ = CP

Q.10 ABCD is a parallelogram and AP and CQ are perpendiculars from vertices A and C on diagonal BD respectively (See figure). Show that (i) ΔAPB ≅ ΔCQD (ii) AP = CQ



Sol.

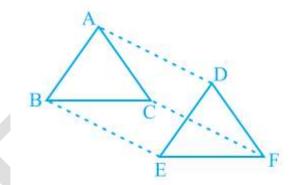
(i) Given: ABCD is a parallelogram and AP and CQ are perpendiculars from vertices A and C on diagonal BD respectively.

So, DC || AB

Now, since DC || AB and transversal BD intersects them at B and D. So, $\angle ABD = \angle BDC$ (i) (Alternate interior angles) Now in $\triangle APB$ and $\triangle CQD$, $\angle ABP = \angle QDC$ (from eq. (i)) $\angle APB = \angle CQD$ (Since, AP \perp BD and QC \perp BD, Each = 90°) and AB = CD (Opposite sides of a || gm) So, from AAS criterion of congruence, $\triangle APB \cong \triangle CQD$Hence Proved.

(ii) Since, we have proved that $\triangle APB \cong \triangle CQD$ So, AP = CQ (Corresponding parts of congruent triangles) Hence Proved.

Q.11 In \triangle ABC and \triangle DEF, AB = DE, AB || DE, BC = EF and BC || EF. Vertices A, B and C are joined to vertices D, E and F respectively (see figure). Show that (i) Quadrilateral ABED is a parallelogram (ii) Quadrilateral BEFC is a parallelogram (iii) AD || CF and AD = CF (iv) Quadrilateral ACFD is a parallelogram. (v) AC = DF (vi) \triangle ABC $\cong \triangle$ DEF



Sol. Given: $\triangle ABC$ and $\triangle DEF$ such that AB = DE and $AB \mid \mid DE$. Also BC = EF and $BC \mid \mid EF$. **To prove:** (i) Quadrilateral ABED is parallelogram. (ii) Quadrilateral BEFC is a parallelogram. (iii) $AD \mid \mid CF$ and AD = CF. (iv) Quadrilateral ACFD is a parallelogram. (v) $AC \mid \mid DF$ and AC = DF(vi) $\triangle ABC \cong \triangle DEF$

Proof: (i) Firstly, consider the quadrilateral ABED Since, AB = DE and AB || DE (Given)

Here, One pair of opposite sides are equal and parallel. Thus, ABED is a parallelogram......Hence Proved.

(ii) Now, consider quadrilateral BEFC, Since, BC = EF and BC || EF (Given) Here, One pair of opposite sides are equal and parallel. Thus, BEFC is a parallelogram......Hence Proved.

(iii) AD = BE and AD || BE (ABED is a ||gm (already Proved))... (i) and CF = BE and CF|| BE (BEFC is a ||gm (Already Proved))... (ii) So, from (i) & (ii), Thus, AD = CF and AD|| CF......Hence Proved.

(iv) Since, AD = CF and AD || CF (Already Proved) Here, one pair of opposite sides are equal and parallel. So, ACFD is a parallelogram......Hence Proved.

(v) Since, ACFD is parallelogram (Already Proved) So, AC = DF (Since, Opposite sides of a|| gm ACFD) Hence Proved.

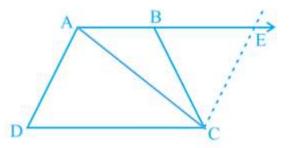
(vi) Now, In $\triangle ABC$ and $\triangle DEF$, AB = DE (Opposite sides of a || gm ABED) BC = EF (Opposite sides of a || gm BEFC) and CA = FD (Opposite sides of || gm ACFD) So, from SSS criterion of congruence, $\triangle ABC \cong \triangle DEF$Hence Proved.

Q.12 ABCD is a trapezium in which AB || CD and AD = BC (see figure) Show that (i) $\angle A = \angle B$ (ii) $\angle C = \angle D$ (iii) $\triangle ABC \cong \triangle BAD$ (iv) diagonal AC = diagonal BD B

Sol.

Given: Here, ABCD is a trapezium in which AB || CD and AD = BC **To prove:** (i) $\angle A = \angle B$ (ii) $\angle C = \angle D$ (iii) $\triangle ABC \cong \triangle BAD$ (iv) Diagonal AC = diagonal BD. **Construction:** Firstly, produce AB to point E and also draw a line CE which is p

Construction: Firstly, produce AB to point E and also draw a line CE which is parallel to AD. Also join AC in figure.



Proof:

(i) From figure, AD || CE and transversal AE intersects at A and E respectively. So, $\angle A + \angle E = 180^{\circ}$... (i) (Since, consecutive interior angles are supplementary.) Again, AB || CD and AD || CE. Thus, AECD is parallelogram. $\Rightarrow AD = CE$ \Rightarrow BC = CE(i) (Since, given that AD = BC) Now, in $\triangle BCE$, BC = CE (From eq. (i)) $\Rightarrow \angle CBE = \angle CEB$ (Angles opposite to equal sides are equal) $\Rightarrow 180 - \angle B = \angle E$ \Rightarrow 180 – $\angle E = \angle B$... (ii) From (i) and (ii), $\angle A = \angle B$Hence Proved. (ii) Since, $\angle A = \angle B$ (Already Proved) $\Rightarrow \angle BAD = \angle ABC$ $180\circ - \angle BAD = 180\circ - \angle ABC$ \Rightarrow $\Rightarrow \angle ADC = \angle BCD$ $\Rightarrow \angle D = \angle C$ Hence Proved.

(iii) Now, In $\triangle ABC$ and $\triangle BAD$, BC = AD (Given) AB = BA (Common Side) $\angle A = \angle B$ (Already Proved) So, from SAS criterion of congruence, $\triangle ABC \cong \triangle BAD$Hence Proved.

(iv) Since, $\triangle ABC \cong \triangle BAD$ (Already Proved) So, AC = BD (Corresponding parts of congruent triangles) Hence Proved.