Polynomials: Exercise - 2.4

Verify that the numbers given alongside of the cubic polynomials below are their Q.1 zeroes. Also verify the relationship between the zeroes and the coefficients in each case:

(i) $2x^3+x^2-5x+2; \frac{1}{2}, 1, -2$ **(ii)** x³-4x²+5x-2; 2, 1, 1 **Sol.** (i) Given: Polynomial $p(x) = 2x^3 + x^2 - 5x + 2$ Compare the given polynomial with cubic polynomial $ax^3 + bx^2 + cx + d$, then a = 2, b = 1, c = -5 and d = 2.Numbers = $\frac{1}{2}$, 1, -2 $p(\frac{1}{2}) = 2(\frac{1}{2})^3 + (\frac{1}{2})^2 - 5(\frac{1}{2}) + 2$ $=\frac{1}{4}+\frac{1}{4}-\frac{5}{2}+2$ $=\frac{1+1-10+8}{4}=\frac{0}{4}=0$ $p(1) = 2(1)^3 + (1)^2 - 5(1) + 2$ = 2 + 1 - 5 + 2 $p(-2) = 2(-2)^3 + (-2)^2 - 5(-2) + 2$ = 2(-8) + 4 + 10 + 2

$$= 2(-8) + 4 + 10$$

 $= -16 + 16 = 0$

Since, given values the satisfy the given polynomial. So, therefore, $\frac{1}{2}$, 1 and – 2 are the zeroes of $2x^3 + x^2 - 5x + 2$.

So,
$$\alpha = \frac{1}{2}$$
, $\beta = 1$ and $\gamma = -2$.
Therefore, $\alpha + \beta + \gamma = \frac{1}{2} + 1 + (-2) = \frac{1+2-4}{2}$
 $= -\frac{1}{2} = -\frac{b}{a}$
 $\alpha\beta + \beta\gamma + \gamma\alpha = (\frac{1}{2})(1) + (1)(-2) + (-2)(\frac{1}{2})$
 $= \frac{1}{2} - 2 - 1$
 $= \frac{1-4-2}{2} = \frac{-5}{2} = \frac{c}{a}$

and $\alpha\beta\gamma = \frac{1}{2} \times 1 \times -2 = 1 = -2/2 = -\frac{d}{a}$

From the above, we have verified the relationship between the zeroes and the coefficients.

(ii) Given: Polynomial $p(x) = x^3 - 4x^2 + 5x - 2$ Compare the given polynomial with cubic polynomial ax³+bx²+cx+d, then a = 1, b = -4, c = 5 and d = -2.Numbers = 2, 1, 1 $p(2)=(2)^{3}-4(2)^{2}+5(2)-2=8-16+10-2=0$

 $p(1) = (1)^3 - 4(1)^2 + 5(1) - 2 = 1 - 4 + 5 - 2 = 0$ Given numbers satisfy the given polynomial. So 2, 1 and 1 are the zeros of $x^3 - 4x^2 + 5x - 2$.

Thus, $\alpha = 2, \beta = 1 \text{ and } \gamma = 1.$ Now $\alpha + \beta + \gamma = 2 + 1 + 1 = 4 = -(-4)/1 = -\frac{b}{a}$ $\alpha\beta + \beta\gamma + \gamma\alpha = (2)(1) + (1)(1) + (1)(2)$ $= 2 + 1 + 2 = 5 = 5/1 = \frac{c}{a}$ and $\alpha\beta\gamma = (2)(1)(1) = 2 = -(-2)/1 = -\frac{d}{a}$

From the above, we have verified the relationship between the zeroes and the coefficients.

Q.2 Find a cubic polynomial with the sum of the product of its zeroes taken two at a time, and the product of its zeroes as 2, -7, -14 respectively. *Sol.* Let α , β and γ be the zeroes of the cubic polynomial. Given: $\alpha + \beta + \gamma = 2$ $\alpha\beta + \beta\gamma + \gamma\alpha = -7$ and $\alpha\beta\gamma = -14$

Cubic polynomial is given by $(x-\alpha)(x-\beta)(x-\gamma) = 0$ $\Rightarrow x^3-x^2(\alpha+\beta+\gamma) + x(\alpha\beta+\beta\gamma+\gamma\alpha) - \alpha\beta\gamma = 0$ $\Rightarrow x^3 - 2x^2 - 7x + 14 = 0$ So, The polynomials is $x^3 - 2x^2 - 7x + 14$.

If the zeroes of the polynomial $x^{3}-3x^{2}+x+1$ are a - b, a, a + b, find a and bQ.3 Sol. Since, (a - b), a (a + b) are the three zeroes of the given polynomial x^3-3x^2+x+1 , Therefore, Sum of the zeros = -b/a(a-b) + a + (a+b) = -(-3)/1 = 3 \Rightarrow 3a = 3 \Rightarrow a = 1(i) Sum of product of zeros = c/a(a - b)a + a(a + b) + (a + b)(a - b) = 1/1 = 1 $\Rightarrow a^2 - ab + a^2 + ab + a^2 - b^2 = 1$ $\Rightarrow 3a^2 - b^2 = 1$ \Rightarrow 3(1)² – b² =1 From the equation (i) $\Rightarrow 3-b^2 = 1$ \Rightarrow b² = 2 \Rightarrow b = $\pm \sqrt{2}$ Thus, a = 1 and $b = \pm \sqrt{2}$.

Q.4 If two zeroes of the polynomial $x^4-6x^3-26x^2+138x-35$ are $2\pm\sqrt{3}$, find other zeroes. Sol. Given: $2\pm\sqrt{3}$ are two zeroes of the polynomial $p(x) = x^4 - 6x^3 - 26x^2 + 138x - 35$. Suppose, $x = 2 \pm \sqrt{3} \Rightarrow x - 2 = \pm\sqrt{3}$ Squaring both the side, we get $(x-2)^2 = (\pm\sqrt{3})^2$ $x^2-4x+4 = 3$ $\Rightarrow x^2-4x+1=0$ Let us divide polynomial $p(x) = x^4-6x^3-26x^2+138x-35$ by x^2-4x+1 to obtain other zeroes.

 \Rightarrow (x + 5) and (x - 7) are other factors of the given [polynomial p(x) = x⁴-6x³-26x²+138x-35. Therefore,

x = -5 and x = 7 are other zeroes of the given polynomial.

Q.5 If the polynomial $x^4-6x^3+16x^2-25x+10$ is divided by another polynomial x^2-2x+k , the remainder comes out to be x + a find k and a. *Sol.* Given: Polynomial $p(x) = x^4-6x^3+16x^2-25x+10$ and $g(x) = x^2-2x+k$

Divide $x^4-6x^3+16x^2-25x+10$ by x^2-2x+k

So, remainder = (2 k - 9) x - (8 - k) k + 10given remainder = x + a. (2 k - 9) x - (8 - k) k + 10 = x + aBy comparing their coefficients, 2 k - 9 = 1 $\Rightarrow 2 k = 10$ $\Rightarrow k = 5$ and - (8 - k) k + 10 = a $\Rightarrow a = -(8 - 5)5 + 10$ $= -3 \times 5 + 10$

```
= -15 + 10
= -5
Thus, the value of k = 5 and a = -5.
```