Polynomials: Exercise 2.3

Q.1 Find the remainder when $x^3 + 3x^2 + 3x + 1$ is divided by

(i) x + 1

(ii) $x - \frac{1}{2}$ (iii) x (iv) $x + \pi$ (v) 5 + 2xSol. (i) From the remainder theorem, the required remainder is equal to p (-1). Given: $p(x) = x^3 + 3x^2 + 3x + 1$ So, $p(-1) = (-1)^3 + 3(-1)^2 + 3(-1) + 1$ = -1 + 3 - 3 + 1= 0

Thus, required remainder = p(-1) = 0

(ii) From the remainder theorem, the required remainder is equal to $p(\frac{1}{2})$.

Given: $p(\frac{1}{2}) = x^3 + 3x^2 + 3x + 1$ $=(\frac{1}{2})^3+3(\frac{1}{2})^2+3(\frac{1}{2})+1$ $= \frac{1}{8} + \frac{3}{4} + \frac{3}{2} + 1 = \frac{1+6+12+8}{8} = \frac{27}{8}$

Thus, the required remainder = $p(\frac{1}{2}) = \frac{27}{8}$

(iii) From the remainder theorem, the required remainder is equal to p (0). Given: $p(x) = x^3 + 3x^2 + 3x + 1$ p(0) = 0 + 0 + 0 + 1So, = 1 Thus, the required remainder = p(0) = 1

(iv) From the remainder theorem, the required remainder is $p(-\pi)$ Given: $p(x) = x^3 + 3x^2 + 3x + 1$ $p(-\pi) = (-\pi)^3 + 3(-\pi)^2 + 3(-\pi) + 1$ So, $= -\pi^3 + 3\pi^2 - 3\pi + 1$ Thus, the required remainder = $p(x) = -\pi^3 + 3\pi^2 - 3\pi + 1$

(v) From the remainder theorem, the required remainder is $p(-\frac{3}{2})$

Given: $p(x) = x^3 + 3x^2 + 3x + 1$ So, $p(-\frac{5}{2}) = (-\frac{5}{2})^3 + 3(-\frac{5}{2})^2 + 3(-\frac{5}{2}) + 1$ $=-\frac{125}{8}+\frac{75}{4}-\frac{15}{2}+1$ $=\frac{-125+150-60+8}{8}=\frac{-27}{8}$ Thus, required remainder = $p(-\frac{5}{2}) = \frac{-27}{8}$

Q.2 Find the remainder when $x^3 - ax^2 + 6x - a$ is divided by x - a. **Sol.** Let $p(x) = x^3 - ax^2 + 6x - a$ From the remainder theorem, when p(x) is divided by (x - a). Then remainder = p(a)So, $p(a) = a^3 - a.a^2 + 6a - a$ $= a^3 - a^3 + 6a - a$ = 5aThus, required remainder = p(x) = 5a

Q.3 Check whether 7 + 3x is a factor of $3x^3 + 7x$

Sol. If (7 + 3x) will be a factor of $p(x)=3x^3 + 7x$, then $p(\frac{-7}{3}) = 0$

So,

$$p(\frac{-7}{3}) = 3(\frac{-7}{3})^3 + 7(\frac{-7}{3})$$
$$= 3 \times (-\frac{343}{27}) - \frac{49}{3}$$
$$= -\frac{343}{9} - \frac{49}{3} \neq 0$$

Thus, (7 + 3x) is not a factor of $(3x^3+7x)$.