

Playing with Numbers: Exercise 16.2

Q.1 If $21y5$ is a multiple of 9, where y is a digit, what is the value of y ?

Sol: Given: $21y5$ is a multiple of 9.

Since, according to rule of divisibility of 9, sum of all the digits should be multiple of 9.

$$\text{So, } 2 + 1 + y + 5 = 8 + y$$

It means that $8 + y$ is a factor of 9. This will be possible when $8 + y$ should be 0, 9, 18, 27....and so on. But y is a single digit number, so this sum can be only 9.

$$\text{So, } 8 + y = 9$$

$$y = 9 - 8$$

$$y = 1$$

Thus, digit y should be digit 1.

Q.2 If $31z5$ is a multiple of 9, where z is a digit, what is the value of z ? You will find that there are two answers for the last problem. Why is this so?

Sol: Given: $31z5$ is a multiple of 9.

Since, according to rule of divisibility of 9, sum of all the digits should be multiple of 9.

$$\text{So, } 3 + 1 + z + 5 = 9 + z$$

It means that $9 + z$ multiple of 9. This will be possible when $9 + z$ should be 0, 9, 18, 27....and so on. But z is a single digit number, so this sum can be 9 or 18.

Thus, digit z should be two possible digits 0 or 9.

Q.3 If $24x$ is a multiple of 3, where x is a digit, what is the value of x ?

(Since $24x$ is a multiple of 3, its sum of digits $6+x$ is a multiple of 3; so $6+x$ is one of these numbers: 0, 3, 6, 9, 12, 15, 18, But since x is a digit, it can only be that $6+x = 6$ or 9 or 12 or 15 . Therefore, $x = 0$ or 3 or 6 or 9 . Thus, x can have any of four different values.)

Sol: Given: $24x$ is a multiple of 3.

Since, according to rule of divisibility of 3, sum of all the digits should be multiple of 9.

$$\text{So, } 2 + 4 + x = 6 + x$$

It means that $6 + x$ multiple of 3. This will be possible when $6 + x$ should be 0, 3, 6, 9, 12, 15, 18....and so on. But x is a single digit number, so this sum can be 6 or 9 or 12 or 15.

Thus, digit x should be four possible digit 0 or 3 or 6 or 9.

Q.4 If $31z5$ is a multiple of 3, where z is a digit, what might be the values of z ?

Sol: Given: $31z5$ is a multiple of 3.

Since, according to rule of divisibility of 3, sum of all the digits should be multiple of 9.

$$\text{So, } 3 + 1 + z + 5 = 9 + z$$

It means that $9 + z$ multiple of 3. This will be possible when $9 + z$ should be 0, 3, 6, 9, 12, 15, 18....and so on. But z is a single digit number, so this sum can be 9 or 12 or 15 or 18.

Thus, digit z should be four possible digit 0, 3, 6 or 9.