

Playing with Numbers: Exercise 16.1

Find the values of the letters in each of the following and give reasons for the steps involved.

Q. 1

$$\begin{array}{r} 3 & A \\ + 2 & \\ \hline B & 2 \end{array}$$

Sol: Calculation for one's place,

By putting $A = 0, 1, 2, 3, 4, 5, 6, \dots$ so on. We observe that

$$A = 7, 7 + 5 = 12$$

So, at one's place is 2 and 1 will carry over tenth's place.

Calculation for tenth's place,

$$1 + 3 + 2 = B$$

$$B = 6$$

Thus, $A = 7$ and $B = 6$

Q. 2

$$\begin{array}{r} 4 & A \\ 9 & 8 \\ \hline C B & 3 \end{array}$$

Sol: Calculation for one's place,

By putting $A = 0, 1, 2, 3, 4, 5, 6, \dots$ so on. We observe that

$$A = 5, 5 + 8 = 13$$

So, at one's place is 3 and 1 will carry over tenth's place.

Calculation for tenth's place,

$$1 + 4 + 9 = 13$$

So, at tenth place is 4 and 1 will carry over thousand's place.

$$So B = 4$$

Calculation for thousand's place

$$C = 1$$

Thus, $A = 5, B = 4$ and $C = 1$

Q. 3

$$\begin{array}{r} 1 & A \\ \times & A \\ \hline 9 & A \end{array}$$

Sol: By putting $A = 0, 1, 2, 3, 4, 5, 6, \dots$ so on. We observe that

$$A \times A = 6 \times 6$$

$$= 36$$

So, 6 will be at one's place and 3 will be the carry over tenth's place.

$$Now, 1 \times 6 + 3 = 9$$

So, 9 is at tenth's place.

Thus, $A = 6$

Q.4

$$\begin{array}{r} A \quad B \\ + 3 \quad 7 \\ \hline 6 \quad A \end{array}$$

Sol: By putting $B = 0, 1, 2, 3, 4, 5, 6\dots$ so on. We observe that $B = 5$, that will give,

$$5 + 7 = 12$$

So, $A = 2$ will be at one's place and 1 will carry over at tenth's place

$$1 + A + 3 = 6$$

Thus, $A = 2$ and $B = 5$

Q.5

$$\begin{array}{r} A \quad B \\ \times \quad 3 \\ \hline C \quad A \quad B \end{array}$$

Sol: By putting, $B = 0, 1, 2\dots$ so on. We observe that $B = 0$ will give, $0 \times 3 = 0$ which will be at one's place.

And $A = 5$ which will give,

$$3 \times 5 = 15$$

So, 5 will be at tenth's place and 1 will carry over at thousand's place.

$$C = 1$$

Thus, $A = 5$, $B = 0$ and $C = 1$.

Q.6

$$\begin{array}{r} A \quad B \\ \times \quad 5 \\ \hline C \quad A \quad B \end{array}$$

Sol: By putting $B = 0, 1, 2, 3, 4, 5, 6\dots$ so on. We observe that

$$B = 0 \text{ will give } 0 \times 5 = 0$$

So, at one's place $B = 0$.

And By putting $A = 0, 1, 2, 3, 4, 5, 6\dots$ so on. We observe that

$$A = 5 \text{ will give } 5 \times 5 = 25$$

So, at tenth's place $A = 5$ and 2 will carry over thousand's place.

$$So, C = 2$$

Thus, $A = 5$, $B = 0$ and $C = 2$.

Q.7

$$\begin{array}{r} A \quad B \\ \times \quad 6 \\ \hline B \quad B \quad B \end{array}$$

Sol: Since, product of B and must be equal to one's place digit as B.

So, by putting $B = 0, 1, 2, 3, 4, 5, 6\dots$ so on. We observe that

$$6 \times 2 = 12, 6 \times 4 = 24, 6 \times 6 = 36 \text{ and } 6 \times 8 = 48$$

Firstly, we try to put $B = 4$, we get the digit 4 at one's place and 2 will carry over tenth's place and now remaining two B's digit should be 4 and 4.

$$So, by putting A = 7, we get 7 \times 6 = 42 + 2 = 44$$

Thus, $A = 7$ and $B = 4$.

Q.8

$$\begin{array}{r} \text{A} \quad \text{1} \\ + \text{1} \quad \text{B} \\ \hline \text{B} \quad \text{o} \end{array}$$

Sol: By putting $B = 0, 1, 2, 3, 4, 5, 6\dots$ so on. We observe that

$B = 9$ will give $1 + 9 = 10$

So, 0 will be at one's place and 1 will carry over at tenth's place.

Now, put $A = 7$ then $7 + 1 + 1 = 9$

So, tenth's place digit $B = 9$

Thus, $A = 7$ and $B = 9$.

Q.9

$$\begin{array}{r} \text{2} \quad \text{A} \quad \text{B} \\ + \text{A} \quad \text{B} \quad \text{1} \\ \hline \text{B} \quad \text{1} \quad \text{8} \end{array}$$

Sol: By putting $B = 0, 1, 2, 3, 4, 5, 6\dots$ so on. We observe that

$B = 7$ will give $7 + 1 = 8$

Now putting $A = 4$ and $B = 7$ at tenth's place digits, then $4 + 7 = 11$

In which first 1 digit at tenth's place and another 1 will carry over at thousand's place.

Now for thousand's place $2 + 4 + 1 = 7$

Thus, $A = 4$ and $B = 7$

Q.10

$$\begin{array}{r} \text{1} \quad \text{2} \quad \text{A} \\ + 6 \quad \text{A} \quad \text{B} \\ \hline \text{A} \quad \text{o} \quad \text{9} \end{array}$$

Sol: By putting A and $B = 0, 1, 2, 3, 4, 5, 6\dots$ so on. We observe that

$A = 8$ and $B = 1$, will give $8 + 1 = 9$

Now at tenth's place $2 + 8 = 10$

Digit 0 will at tenth's place and 1 will carry over at thousand's place.

So, at thousand's place $1 + 1 + 6 = 8$

Thus, $A = 8$ and $B = 1$.