Number Systems: Exercise 1.2

Q.1 State whether the following statements are true or false. Justify your answers.(i) Every irrational number is a real number.

(ii) Every point on the number line is of the form \sqrt{m} , where m is a natural number.

(iii) Every real number is an irrational number.

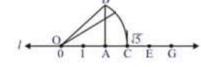
Sol.(i) Every irrational number is a real number: True Justification: A real number can be either rational or irrational.

(ii) Every point on the number line is of the form \sqrt{m} : False

Justification: Numbers of any other types also lie on the number line.

(iii) Every real number is an irrational number: False

Justification: Rational numbers are also in real numbers.

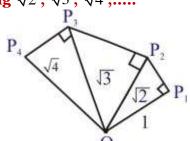

Q.2 Are the square roots of all positive integers irrational? If not, give an example of the square root of a number that is a rational numbers.

Sol. No, the square roots of all positive integers are not irrational. Example: 9 is a positive integer but $\sqrt{9} = 3$ is a natural number.

Q.3 Show how $\sqrt{5}$ can be represented on the number line.

Sol. Represent $\sqrt{5}$ on the number line.

Firstly, we represent $\sqrt{5}$ on the number line l and construct a right -angled ΔOAB , right - angled at A such that OA = 2 and AB = 1 unit


Then, from the Pythagoras theorem

$$OB^{2} = OA^{2} + AB$$
$$= 4+1$$
$$OB = \sqrt{5}$$

Now, cut off a length OB = OC = $\sqrt{5}$ on the number line at point C.

Thus, the point C represents the irrational number $\sqrt{5}$.

Q.4 Classroom activity (Constructing the 'square root spiral'): Take a large sheet of paper and construct the 'square root spiral' in the following fashion. Start with a point O and draw a line segment OP₁ of unit length. Draw a line segment P₁P₂ perpendicular to OP₁ of unit length (see figure). Now draw a line segment P₂P₃ perpendicular to OP₂. Then draw a line segment P₃P₄ perpendicular to OP₃. Continuing in the manner, you can get the line segment P_{n-1}P_n by drawing a line segment of unit length perpendicular to OP_{n-1}. In this manner, you will have created the points P₂, P₃....P_n,.... and joined them to create a beautiful spiral depicting $\sqrt{2}$, $\sqrt{3}$, $\sqrt{4}$,.....

Sol. This is classroom activity - Do it as directed own your basis.