Lines and Angles: Exercise 6.3

Q.1 In figure sides QP and RQ of \triangle PQR are produced to points S and T respectively. If \angle SPR = 135° and \angle PQT = 110°, find \angle PRQ.

Sol. Since, line QS is a straight line. So,

$$\angle$$
QPR + \angle SPR = 180° (Linear pair angles)

$$\Rightarrow \angle QPR + 135^{\circ} = 180^{\circ}$$

$$\Rightarrow \angle QPR = 180^{\circ} - 135^{\circ}$$

$$=45^{\circ}$$

Now, $\angle TQP = \angle QPR + \angle PRQ$ (From the exterior angle theorem)

$$\Rightarrow$$
 110° = 45° + \angle PRQ

$$\Rightarrow$$
 \angle PRQ = 110^o - 45^o

$$= 65^{\circ}$$

Thus $\angle PRQ = 65^{\circ}$

Q.2 In figure, $\angle X = 62^{\circ}$, $\angle XYZ = 54^{\circ}$. If YO and ZO are the bisectors of $\angle XYZ$ and $\angle XZY$ respectively of $\triangle XYZ$, find $\angle OZY$ and $\angle YOZ$.

Sol. Firstly, consider Δ XYZ,

$$\angle$$
YXZ + \angle XYZ + \angle XZY = 180° (Since, sum of all the angles of triangle is 180°.)

$$\Rightarrow$$
 62° + 54° + \angle XZY = 180° (Given: \angle YXZ = 62°, \angle XYZ = 54°)

$$\Rightarrow \angle XZY = 180^{\circ} - 62^{\circ} - 54^{\circ}$$

$$= 64^{\circ}$$

Here, YO and ZO are bisectors of angles $\angle XYZ$ and $\angle XZY$.

So,

$$\angle OYZ = \frac{1}{2} \times \angle XYZ$$

$$= \frac{1}{2} \times 54 = 27^{\circ}$$
and, $\angle OZY = \frac{1}{2} \times \angle XZY$

and,
$$\angle OZY = \frac{1}{2} \times \angle XZ$$

$$= \frac{1}{2} \times 64^{\circ}$$

$$= \frac{32^{\circ}}{2}$$

Now, In \triangle OYZ,

 \angle YOZ + \angle OYZ + \angle OZY = 180° (Since, sum of all the angles of triangle is 180°.)

$$\Rightarrow \angle YOZ + 27^0 + 32^0 = 180^0$$

$$\Rightarrow \angle YOZ = 180^{\circ} - 27^{\circ} - 32^{\circ}$$
$$= 180^{\circ} - 59^{\circ}$$
$$= 121^{\circ}$$

Thus, $\angle OZY = 32^{\circ}$ and $\angle YOZ = 121^{\circ}$

Q.3 In figure if AB || DE, \angle BAC = 35° and \angle CDE = 53°, find \angle DCE.

Sol. Given: AB || DE and transversal AE intersects them at A and E respectively.

So, $\angle DEA = \angle BAE$ [Alternate interior angles)

$$\Rightarrow \angle DEC = 35^{\circ} \text{ (Given: } \angle BAE = 35^{\circ}\text{)}$$

Now, In \triangle DEC,

 $\angle DCE + \angle DEC + \angle CDE = 180^{\circ}$ (Since, sum of all the angles of triangle is 180°.)

$$\Rightarrow \angle DCE + 35^{\circ} + 53^{\circ} = 180^{\circ}$$

$$\Rightarrow \angle DCE = 180^{\circ} - 35^{\circ} - 53^{\circ}$$
$$= 180^{\circ} - 88^{\circ}$$
$$= 92^{\circ}$$

Thus, $\angle DCE = 92^{\circ}$

Q.4 In figure, if lines PQ and RS intersect at point T, such that $\angle PRT = 40^{\circ}$, $\angle RPT = 95^{\circ}$ and $\angle TSQ = 75^{\circ}$, find $\angle SQT$.


```
Sol. Firstly, In \triangle PRT,

\anglePRT + \angleRTP + \angleTPR = 180° (Since, sum of all the angles of triangle is 180°.)

\Rightarrow 40° + \angleRTP + 95° = 180°

\Rightarrow \angleRTP = 180° - 40° - 95°

= 180° - 135°

= 45°

\angleSTQ = \angleRTP (Vertically opposite angles)

\Rightarrow \angleSTQ = 45° (Since RTP = 45°)

Now, In \triangle TQS,

\angleSQT + \angleSTQ + \angleTSQ = 180° (Since, sum of all the angles of triangle is 180°.)

\Rightarrow \angleSQT + 45° + 75° = 180° (Given, \angleTSQ = 75°)

\Rightarrow \angleSQT = 180° - 45° - 75°

= 180° - 120°

= 60°

Thus, \angleSQT = 60°
```

Q.5 In figure if PQ \perp PS, PQ | | SR, \angle SQR = 28° and \angle QRT = 65°, then find the values of x and y.

Sol. By using exterior angle property in \triangle SRQ, \angle QRT = \angle RQS + \angle QSR \Rightarrow 65° = 28° + \angle QSR (Given, \angle QRT = 65°, \angle RQS = 28°) \Rightarrow QSR = 65° – 28° = 37°

Here, PQ || SR and the transversal PS intersects them at P and S respectively. So, $\angle PSR + \angle SPQ = 180^{\circ}$ (Since, sum of consecutive interior angles is 180°) $\Rightarrow (\angle PSQ + \angle QSR) + 90^{\circ} = 180^{\circ}$ $\Rightarrow y + 37^{\circ} + 90^{\circ} = 180^{\circ}$ $\Rightarrow y = 180^{\circ} - 90^{\circ} - 37^{\circ}$ $= 180^{\circ} - 127^{\circ}$ $= 53^{\circ}$ Now, In the right $\triangle SPQ$, $\angle PQS + \angle PSQ = 90^{\circ}$ $\Rightarrow x + 53^{\circ} = 90^{\circ}$ $\Rightarrow x = 90^{\circ} - 53^{\circ}$ $= 37^{\circ}$ Thus, $x = 37^{\circ}$ and $y = 53^{\circ}$

Q.6 In figure, the side QR of $\triangle PQR$ is produced to a point S. If the bisectors of $\angle PQR$ and $\triangle PRS$ meet at point T, then prove that $\triangle QTR = \frac{1}{2} \triangle QPR$.

Sol. Firstly, In Δ PQR,

Exterior $\angle PRS = \angle P + \angle Q$ (From exterior angle theorem)

$$\Rightarrow \frac{1}{2} \text{ Exterior } \angle PRS = \frac{1}{2} \angle P + \frac{1}{2} \angle Q$$

Since, QT and RT are bisectors of $\angle Q$ and $\angle PRS$ respectively. So, $\angle Q = 2 \angle TQR$ and Exterior $\angle PRS = 2 \angle TRS$

$$\Rightarrow \angle TRS = \frac{1}{2} \angle P + \frac{1}{2} \angle Q....(i)$$

Now, In \triangle QRT,

Exterior $\angle TRS = \angle TQR + \angle T$ (ii)

From (i) and (ii),

$$\frac{1}{2} \angle P + \angle TQR = \angle TQR + \angle T$$

$$\Rightarrow \frac{1}{2} \angle P = \angle T$$

Since, $\angle P = \angle QPR$ and $\angle T = \angle QTR$

$$\Rightarrow \angle QTR = \frac{1}{2} \angle QPR$$

Thus, $\angle QTR = \frac{1}{2} \angle QPR$ Hence Proved.