

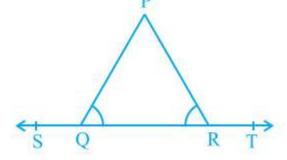
Sol. Given: a : b = 2 : 3 and $a + b = \angle POX = \angle POY = 90^{\circ}$ And sum of ratios = 2 + 3 = 5

So,
$$a = \frac{2}{5} \times 90^\circ = 2 \times 18^\circ = 36^\circ$$

and $b = \frac{3}{5} \times 90^\circ = 3 \times 18^\circ = 54^\circ$
Since MN is a straight line and ray OX stands on MN. So,

 $\angle MOX + \angle XON = 180^{\circ}$ (Sum of linear pairs angles is 180°) $\Rightarrow b + c = 180^{\circ}$ $\Rightarrow 54^{\circ} + c = 180^{\circ}$ $\Rightarrow c = 180^{\circ} - 54^{\circ} = 126^{\circ}$ Thus, $c = 126^{\circ}$

Q.3 In figure $\angle PQR = \angle PRQ$, then prove that $\angle PQS = \angle PRT$.



Sol. Since SR is a straight line and QP stands on the line SR. So, $\angle PQS + \angle PQR = 180^{\circ}$ (Sum of linear pairs angles is 180°)....... (i) Again QT is a straight line and PR stands on the line QT. So, $\angle PRQ + \angle PRT = 180^{\circ}$ (Sum of linear pairs angles is 180°)...... (ii) From (i) and (ii), $\angle PQS + \angle PQR = \angle PRQ + \angle PRT$ (From eq. (i) & (ii)) (iii) Also given $\angle PQR = \angle PRQ$ (iv) Subtracting (iv) from (iii), we get $\angle PQS = \angle PRT$ Hence Proved

Q.4 In figure, if x + y = w + z, then prove that AOB is a line.

Sol. Since, the sum of all angles around a point = 360° So, $(\angle BOC + \angle COA) + (\angle BOD + \angle AOD) = 360^{\circ}$ $\Rightarrow (x + y) + (w + z) = 360^{\circ}$ Given, x + y = w + z

So, $x + y = w + z = \frac{360^{\circ}}{2} = 180^{\circ}$

Therefore, \angle BOC and \angle COA, \angle BOD and \angle AOD form linear pairs. So, OA and OB are two opposite rays. Thus, AOB is a straight line.

