# Lines and Angles: Exercise 5.2

Q.1 State the property that is used in each of the following statements?
(i) If a || b, then ∠1 = ∠5.
(ii) If ∠4 = ∠6, then a || b.
(iii) If ∠4 + ∠5 = 180°, then a || b



#### Sol:

(i) Given: If a || b, then  $\angle 1 = \angle 5$ . **Property:** pair of corresponding angles property is used.

(ii) Given: If  $\angle 4 = \angle 6$ , then a || b. **Property:** Pair of alternate angles are equal, then the lines are parallel.

(iii) Given: If  $\angle 4 + \angle 5 = 180^\circ$ , then a || b **Property:** Sum of interior angles is 180°, then the lines are parallel.

# Q.2 In the adjoining figure, identify



(i) The pairs of corresponding angles.

(ii) The pairs of alternate interior angles.

#### (iii) The pairs of interior angles on the same side of the transversal.

#### (iv) The vertically opposite angles.

#### Sol:

(i) The pairs of corresponding angles:  $\angle 1$  and  $\angle 5$ ,  $\angle 4$  and  $\angle 8$ ,  $\angle 2$  and  $\angle 6$ ,  $\angle 3$  and  $\angle 7$ .

(ii) The pairs of alternate interior angles:  $\angle 2$  and  $\angle 8$ ,  $\angle 3$  and  $\angle 5$ .

(iii) The pairs of interior angles on the same side of the transversal:  $\angle 2$  and  $\angle 5$ ,  $\angle 3$  and  $\angle 8$ .

(iv) The vertically opposite angles:  $\angle 1$  and  $\angle 3$ ,  $\angle 5$  and  $\angle 7$ ,  $\angle 2$  and  $\angle 4$ ,  $\angle 6$  and  $\angle 8$ .

## **Q.3** In the adjoining figure, *p* || *q*. Find the unknown angles.



#### *Sol:* Given: Line *p* || *q*.

From the figure,  $\angle d = \angle 125^{\circ}$  ... (Since, corresponding angles are equal.) Since, Linear pair is the sum of adjacent angles = 180° So,  $\angle e + 125^{\circ} = 180^{\circ}$  ... (Linear pair angles)  $\angle e = 180^{\circ} - 125^{\circ}$   $\angle e = 55^{\circ}$ Now, for  $\angle f$   $\angle f = \angle e = 55^{\circ}$  (Since, Vertical opposite angles are equal.)  $\angle b = \angle d = 125^{\circ}$  (Since, Vertical opposite angles are equal.)  $\angle c = \angle f = 55^{\circ}$  (Since, corresponding angles are equal.)  $\angle a = \angle e = 55^{\circ}$  (Since, corresponding angles are equal.) Thus,  $\angle a = \angle e = \angle f = \angle c = 55^{\circ}$ ,  $\angle b = \angle d = 125^{\circ}$ .

## Q.4 Find the value of x in each of the following figures if $l \parallel m$ .





*Sol:* (i) In first figure:



From the figure,

 $\angle y = 110^{\circ}$  (Since, corresponding angles are equal.) As we know that, linear pair is the sum of adjacent angles is 180°. So,  $\angle x + \angle y = 180^{\circ}$  $\angle x + 110^{\circ} = 180^{\circ}$  $\angle x = 180^{\circ} - 110^{\circ}$  $\angle x = 70^{\circ}$ 

Thus, required angle  $\angle x = 70^{\circ}$ .

## (ii) In second figure,



From the figure,  $x = 100^{\circ}$  (Since, corresponding angles are equal.)

Q.5 In the given figure, the arms of two angles are parallel. If ∠ABC = 70°, then find (i) ∠DGC (ii) ∠DEF



**Sol:** Given: From the figure, AB || DG and BC || EF (i) Since, AB || DG and BC is the transversal line which intersects them at points B and G.  $\angle$ DGC =  $\angle$ ABC (Since, corresponding angles) So,  $\angle$ DGC = 70°

(ii) Since, BC || EF and DE is the transversal line which intersect them at points G and E.  $\angle DEF = \angle DGC$  (Since, corresponding angles) So,  $\angle DEF = 70^{\circ}$ 



980





Since, the sum of interior angles on the same side of transversal is  $180^{\circ}$ . So,  $126^{\circ} + 44^{\circ} = 170^{\circ}$ 

But here the sum of interior angles on the same side of transversal is not equal to  $180^{\circ}$ . Therefore, lines *l* and *m* are not parallel to each other.

## (ii) Given Figure:



In given figure, let  $\angle p$  be the vertically opposite angle of 75°. So,  $\angle p = 75^{\circ}$ 

Since, the sum of interior angles on the same side of transversal is 180°.  $\angle p$  + 75° = 75°+75° = 150°

But here the sum of interior angles on the same side of transversal is not equal to 180°.

Therefore, lines *l* and *m* are not parallel to each other.

# (iii) Given figure:



In given figure, let q be the vertical angle of  $57^{\circ}$ .

So,  $q = 57^{\circ}$ 

Since, the sum of interior angles on the same side of transversal is 180°.

 $\angle q + 123^\circ = 57^\circ + 123^\circ = 180^\circ.$ 

Now, here the sum of interior angles on the same side of transversal is equal to  $180^{\circ}$ . Therefore, lines *l* and *m* are parallel to each other.

# (iv) Given figure:



In given figure, let x be the one of the adjacent angles of a linear pair. Since, linear pair is the sum of adjacent angles is equal to  $180^{\circ}$ .

 $\angle x + 98^{\circ} = 180^{\circ}$ 

 $\angle x = 180^{\circ} - 98^{\circ}$ 

 $\angle x = 82^{\circ}$ 

Now,  $\angle x = 82^{\circ}$  and 720 are the corresponding angles. But corresponding angles should be equal. Therefore, lines *l* and *m* are not parallel to each other.