Fractions and Decimals: Exercise 2.4

(iii) $8 \div (7/3)$

(vi) $5 \div 3\frac{4}{7}$

Q.1 Find: (i) 12 ÷ (3/4) (ii) 14 ÷ (5/6) (iv) 4 ÷ (8/3) (v) 3 ÷ $2\frac{1}{3}$

Sol: (i) Given: $12 \div (3/4) = 12 \times (4/3)$ = 48/3= 16

(ii) Given: $14 \div (5/6) = 14 \ge (6/5)$ = 84/5

(iii) Given: 8 ÷ (7/3) = 8 x (3/7) = 24/7

(iv) Given: $4 \div (8/3) = 4 \times (3/8)$ = 12/8= 3/2

(v) Given: $3 \div 2\frac{1}{3}$

Firstly, we convert the mixed fraction into improper fraction.

$$3 \div (7/3) = 3 \ge (3/7)$$

= 9/7 or $1\frac{2}{7}$

(vi) Given: $5 \div 3\frac{4}{7}$

Firstly, we convert the mixed fraction into improper fraction.

$$5 \div 3\frac{4}{7} = 5 \div (25/7)$$
$$= 5 \times (25/7)$$
$$= 125/7 \text{ or } 17\frac{6}{7}$$

Q.2 Find the reciprocal of each of the following fractions. Classify the reciprocals as proper fractions, improper fractions and whole numbers.

(i) 3/7	(ii) <u>5</u> /8	(iii) 9 /7	(iv) 6/5
(v) 12/7	(vi) 1/8	(vii) 1/11	
Sol:	· · ·	· · · ·	
(i) Given: 3/7			
Reciprocal of (3	/7) is (7/3).		

Since, fraction in which numerator is greater than its denominator is called improper fraction. So it is an improper fraction.

(ii) Given: 5/8Reciprocal of (5/8) is (8/5). Since, fraction in which numerator is greater than its denominator is called improper fraction. So it is an improper fraction.

(iii) Given: 9/7

Reciprocal of (9/7) is (7/9). Since, fraction in which denominator is greater than its numerator is called proper fraction. So it is a proper fraction.

(iv) Given: 6/5

Reciprocal of (6/5) is (5/6).

Since, fraction in which denominator is greater than its numerator is called proper fraction. So it is a proper fraction.

(v) Given: 12/7

Reciprocal of (12/7) is (7/12). Since, fraction in which denominator is greater than its numerator is called proper fraction. So it is a proper fraction.

(vi) Given: 1/8

Reciprocal of (1/8) is (8).

Since, all positive integers including o is called whole numbers. So it is a whole number.

(vii) Given: 1/11

Reciprocal of (1/11) is (11). Since, all positive integers including 0 is called whole numbers. So it is a whole number.

Q.3 Find: (i) (7/3) ÷ 2 (ii) $(4/9) \div 5$ (iii) (6/13) ÷7 (vi) $4\frac{3}{7} \div 7$ (v) 3 (iv) 4 - ÷ 3 Sol: (i) Given: $(7/3) \div 2 = (7/3) \times (1/2)$ $= (7 \times 1)/(3 \times 2)$ $= 7/6 \text{ or } 1\frac{1}{c}$ (ii) Given: $(4/9) \div 5 = (4/9) \times (1/5)$ =(4x1)/(9x5)= 4/45(iii) Given: $(6/13) \div 7 = (6/13) \times (1/7)$ = (6x1)/(13x7)= 6/91(iv) Given: $4\frac{1}{2} \div 3$ Firstly, we convert the mixed fraction into improper fraction.

$$4\frac{1}{3} \div 3 = (13/3) \times (1/3)$$

= (13x1)/(3x3)
= 13/9

(v) Given:
$$3\frac{1}{2} \div 4$$

Firstly, we convert the mixed fraction into improper fraction.

$$3\frac{1}{2} \div 4 = (7/2) \times (1/4)$$

= (7x1)/(2x4)
= 7/8

(vi) Given:
$$4\frac{3}{7} \div 7$$

Firstly, we convert the mixed fraction into improper fraction.

$$4\frac{3}{7} \div 7 = (31/7) \times (1/7)$$

= (31x1)/(7x7)
= 31/49

Q.4 Find:

(i) $(2/5) \div (1/2)$ (ii) $(4/9) \div (2/3)$ (iii) $(3/7) \div (8/7)$ (iv) $2\frac{1}{3} \div (3/5)$ (v) $3\frac{1}{2} \div (8/3)$ (vi) $(2/5) \div 1\frac{1}{2}$ (vii) $3\frac{1}{5} \div 1\frac{2}{3}$ (vii) $2\frac{1}{5} \div 1\frac{1}{5}$ Sol: (i) Given: $(2/5) \div (1/2) = (2/5) \times (2/1)$ = (2x2)/(5x1) = 4/5(ii) Given: $(4/9) \div (2/3) = (4/9) \times (3/2)$ = (4x3)/(9x2) = 12/18 = 2/3(iii) Given: $(3/7) \div (8/7) = (3/7) \times (7/8)$ = (3x7)/(7x8) = 21/56 = 3/8(iv) Given: $2\frac{1}{3} \div (3/5)$ Firstly, we convert the mixed fraction into improper fraction. $2\frac{1}{3} \div (3/5) = (7/3) \times (5/3)$

= (7x5)/(3x3)

$$=(35/9) \text{ or } 3\frac{8}{9}$$

(v) Given: $3\frac{1}{2} \div (8/3)$

Firstly, we convert the mixed fraction into improper fraction.

$$3\frac{1}{2} \div (8/3) = (7/2) \times (3/8)$$

= (7x3)/(2x8)
= (21/16) or $1\frac{5}{16}$

(vi) Given: $(2/5) \div 1\frac{1}{2}$

Firstly, we convert the mixed fraction into improper fraction.

$$(2/5) \div 1\frac{1}{2} = (2/5) \div (3/2) = (2/5) \times (2/3) = (2x2)/(5x3) = 4/15$$

(vii) Given: $3\frac{1}{5} \div 1\frac{2}{3}$

Firstly, we convert the mixed fraction into improper fraction.

$$3\frac{1}{5} \div 1\frac{2}{3} = (16/5) \div (5/3)$$
$$= (16/5) \times (3/5)$$
$$= (16x_3)/(5x_5)$$
$$= 48/25 \text{ or } 1\frac{23}{25}$$

(vii) Given: $2\frac{1}{5} \div 1\frac{1}{5}$

Firstly, we convert the mixed fraction into improper fraction.

$$2\frac{1}{5} \div 1\frac{1}{5} = (11/5) \div (6/5)$$

= (11/5) x (5/6)
= (11 x 5)/(5x6)
= 55/30
= 11/6