Exponents and Power: Exercise 13.2

Q.1 Using laws of expon	ents, simplify and wr	ite the answer in exponential fo	orm:
$(i) 3^2 \times 3^4 \times 3^8$	(ii) 6 ¹⁵ ÷ 6 ¹⁰	(iii) $\mathbf{a}^3 \times \mathbf{a}^2$	
(iv) $7^{x} \times 7^{2}$	(v) (5 ²) ³ ÷ 5 ³	(vi) 2 ⁵ × 5 ⁵	
(vii) $a^4 \times b^4$	(viii) (3 ⁴) ³	(ix) $(2^{20} \div 2^{15}) \times 2^3$	
(x) $8^{t} \div 8^{2}$			
(1) Given: $3^2 \times 3^4 \times 3^\circ$			
Since, $a^{m} \times a^{n} = a^{m+n}$			
$3^{-} \times 3^{+} \times 3^{-} = (3)^{-} \times 1^{-}$			
5			
(ii) Given: 6 ¹⁵ ÷ 6 ¹⁰			
Since, $a^m \div a^n = a^{m-n}$			
$6^{15} \div 6^{10} = (6)^{15-10}$			
$= 6^5$			
(iii) Given: $a^3 \times a^2$			
Since, $a^{m} \times a^{n} = a^{m+n}$			
$a^{3} \times a^{2} = (a)^{3+2}$			
- a°			
(iv) Given: 7 ^x × 7 ²			
Since $a^m \times a^n = a^{m+n}$			
$7^{x} \times 7^{2} = (7)^{x+2}$			
, , , , ,			
(v) Given: (5 ²) ³ ÷ 5 ³			
Since, $a^m \div a^n = a^{m-n}$			
$(5^2)^3 \div 5^3 = (5)^{6-3}$			
$= 5^{3}$			
(vi) Civon 05×5			
Since $a^m \times b^m - (ab)^m$			
$2^5 \times 5^5 = (2 \times 5)^5$			
$= 10^5$			
(vii) Given: a ⁴ × b ⁴			
Since, $a^m \times b^m = (ab)^m$			
$a^4 \times b^4 = (a \times b)^4$			
$= (ab)^4$			
$(viii)$ Civon: $(24)^3$			
Since $(a^m)^n - a^{mn}$			
$(3^4)^3 = (3)^{4 \times 3}$			
$= 3^{12}$			
Ŭ			
(ix) Given: $(2^{20} \div 2^{15}) \times 2^{35}$	3		
Since, $a^m \div a^n = a^{m-n}$ and a^n	$a^{m} \times a^{n} = a^{m+n}$		
$(2^{20} \div 2^{15}) \times 2^3 = (2)^{20-15} \times$	2^{3}		
$= 2^5 \times 2^3$			
$= (2)^{5+3}$			
= 2°			

(x) Given: $8^{t} \div 8^{2}$ Since, $a^m \div a^n = a^{m-n}$ $8^{t} \div 8^{2} = (8)^{t-2}$ Q.2 Simplify and express each of the following in exponential form: (ii) $((5^2)^3 \times 5^4) \div 5^7$ (i) $(2^3 \times 3^4 \times 4)/(3 \times 3^2)$ (iii) 25⁴ ÷ 5³ (iv) $(3 \times 7^2 \times 11^8) / (21 \times 11^3)$ (v) $3^{7}/(3^{4} \times 3^{3})$ (vi) $2^{\circ} + 3^{\circ} + 4^{\circ}$ (vii) $2^{\circ} \times 3^{\circ} \times 4^{\circ}$ (viii) $(3^{\circ} + 2^{\circ}) \times 5^{\circ}$ (ix) $(2^8 \times a^5)/(4^3 \times a^3)$ (x) $(a^{5}/a^{3}) \times a^{8}$ (xi) $(4^5 \times a^8 b^3) / (4^5 \times a^5 b^2)$ (xii) $(2^3 \times 2)^2$ Sol: (i) Given: $(2^3 \times 3^4 \times 4)/(3 \times 3^2) = (2^3 \times 3^4 \times 2 \times 2)/(3 \times 2 \times 2 \times 2 \times 2 \times 2)$ $= (2^3 \times 3^4 \times 2^2) / (3 \times 2^5)$ Since, $a^m \times a^n = a^{m+n}$ $= (2^{3+2} \times 3^4) / (3 \times 2^5)$ $= (2^5 \times 3^4) / (3 \times 2^5)$ Since, $a^m \div a^n = a^{m-n}$ $= 2^{5-5} \times 3^{4-1}$ $= 2^{0} \times 3^{3}$ Since, $a^{o} = 1$ $= 1 \times 3^{3}$ $= 3^{3}$ (ii) Given: $((5^2)^3 \times 5^4) \div 5^7$ Since, $(a^m)^n = a^{mn}$ $((5^2)^3 \times 5^4) \div 5^7 = (5^6 \times 5^4) \div 5^7$ Since, $a^m \times a^n = a^{m+n}$ $= (5^{6+4}) \div 5^{7}$ $= 5^{10} \div 5^7$ Since, $a^m \div a^n = a^{m-n}$ $= 5^{10-7}$ $= 5^{3}$ (iii) Given: $25^4 \div 5^3 = (5 \times 5)^4 \div 5^3$ $= (5^2)^4 \div 5^3$ Since, $(a^m)^n = a^{mn}$ $= 5^8 \div 5^3$ Since, $a^m \div a^n = a^{m-n}$ $= 5^{8-3}$ $= 5^{5}$ (iv) Given: $(3 \times 7^2 \times 11^8) / (21 \times 11^3) = (3 \times 7^2 \times 11^8) / (3 \times 7 \times 11^3)$ Since, $a^m \div a^n = a^{m-n}$ $= 3^{1-1} \times 7^{2-1} \times 11^{8-3}$ $= 3^{\scriptscriptstyle 0} \times 7 \times 11^{\scriptscriptstyle 5}$ $= 1 \times 7 \times 11^{5}$ $= 7 \times 11^{5}$ (v) Given: $3^7/(3^4 \times 3^3)$ Since, $a^m \times a^n = a^{m+n}$ $3^{7}/(3^{4} \times 3^{3}) = 3^{7}/(3^{4+3})$ $= 3^{7}/3^{7}$ Since, $a^m \div a^n = a^{m-n}$ $= 3^{7-7}$ Since, $a^{o} = 1$

$= 3^{\circ}$ = 1	
(vi) Given: $2^{\circ} + 3^{\circ} + 4^{\circ}$ Since, $a^{\circ} = 1$ $2^{\circ} + 3^{\circ} + 4^{\circ} = 1 + 1 + 1$ = 3	
(vii) Given: $2^{\circ} \times 3^{\circ} \times 4^{\circ}$ Since, $a^{\circ} = 1$ $2^{\circ} \times 3^{\circ} \times 4^{\circ} = 1 \times 1 \times 1$ = 1	
(viii) Given: $(3^{\circ} + 2^{\circ}) \times$ Since, $a^{\circ} = 1$ $(3^{\circ} + 2^{\circ}) \times 5^{\circ} = (1 + 1) \times 1$ $= (2) \times 1$ = 2	5°
(ix) Given: (2 ⁸ × a ⁵)/ (4 ³	$(x a^3) = (2^8 \times a^5) / [(2 \times 2)^3 \times a^3]$
Since, $(a^m)^n = a^{mn}$	$= (2^{\circ} \times a^{\circ}) / [(2^{\circ})^{\circ} \times a^{\circ}]$
Since, $a^m \div a^n = a^{m-n}$	$= (2^8 \times a^5) / [2^6 \times a^3]$
	$= 2^{8-6} \times a^{5-3}$
Since, $(a^m)^n = a^{mn}$	$= 2^2 \times a^2$ $= 2a^2$
(x) Given: $(a^{5}/a^{3}) \times a^{8}$ Since, $a^{m} \div a^{n} = a^{m-n}$ $(a^{5}/a^{3}) \times a^{8} = (a^{5\cdot3}) \times a^{8}$ $= (a^{2}) \times a^{8}$ Since, $a^{m} \times a^{n} = a^{m+n}$ $= a^{2+8}$ $= a^{10}$	
(xi) Given: $(4^5 \times a^8b^3)/$ Since, $a^m \div a^n = a^{m-n}$ $= 4^{5-5} \times (a^{8-5} \times b^{3-2})$ $= 4^o \times (a^3b)$ Since, $a^o = 1$ $= 1 \times a^3b$ $= a^3b$	$(4^5 \times a^5b^2)$
(xii) Given: $(2^3 \times 2)^2$ Since, $a^m \times a^n = a^{m+n}$ = $(2^{3+1})^2$ = $(2^4)^2$ Since, $(a^m)^n = a^{mn}$ = $(2)^{4 \times 2}$ = 2^8	
Q.3 Say true or false at (i) $10 \times 10^{11} = 100^{11}$ (iii) $2^3 \times 3^2 = 6^5$	nd justify your answer: (ii) 2 ³ > 5 ² (iv) 3 ⁰ = (1000) ⁰

Sol: (a) Given: $10 \times 10^{11} = 100^{11}$ By taking LHS, Since, $a^m \times a^n = a^{m+n}$ $10 \times 10^{11} = 10^{1+11}$ $= 10^{12}$ Now, by taking RHS, $100^{11} = (10 \times 10)^{11}$ Since, $a^m \times a^n = a^{m+n}$ $=(10^{1+1})^{11}$ $=(10^2)^{11}$ Since, $(a^m)^n = a^{mn}$ $=(10)^{2 \times 11}$ $= 10^{22}$ From above, $10^{12} < 10^{22}$ So, given statement is not true. (b) Given: $2^3 > 5^2$ By taking LHS,

By taking LHS, $2^3 = 2 \times 2 \times 2$ = 8Now, by taking RHS, $5^2 = 5 \times 5$ = 25From above, $2^3 < 5^2$ So, given statement is not true.

```
(iii) Given: 2^3 \times 3^2 = 6^5
By taking LHS,
2^3 \times 3^2 = 2 \times 2 \times 2 \times 3 \times 3
= 72
Now, by taking RHS,
6^5 = 6 \times 6 \times 6 \times 6 \times 6
= 7776
From above, 2^3 \times 3^2 < 6^5
So, given statement is not true.
```

```
(iv) Given: 3^{\circ} = (1000)^{\circ}
By taking LHS,
3^{\circ} = 1
Now, by taking RHS,
(1000)^{\circ} = 1 (Since, a^{\circ} = 1)
From above, 3^{\circ} = (1000)^{\circ}
So, given statement is true.
```

```
Q.4 Express each of the following as a product of prime factors only in exponential form:

(i) 108 \times 192 (ii) 270 (iii) 729 × 64 (iv) 768

Sol:

(i) Given: 108 \times 192

Prime factors of 108 = 2 \times 2 \times 3 \times 3 \times 3

= 2^2 \times 3^3

And prime factors of 192 = 2 \times 3

= 2^6 \times 3

So, 108 \times 192 = (2^2 \times 3^3) \times (2^6 \times 3)

Since, a^m \times a^n = a^{m+n}

= 2^{2+6} \times 3^{3+1}

= 2^8 \times 3^4
```

(ii) Given: 270 Prime factors of $270 = 2 \times 3 \times 3 \times 3 \times 5$ Since, $a^m \times a^n = a^{m+n}$ $= 2 \times 3^3 \times 5$ (iii) Given: 729 × 64 Prime factors of $729 = 3 \times 3 \times 3 \times 3 \times 3 \times 3$ Since, $a^m \times a^n = a^{m+n}$ $= 3^{6}$ Prime factors of $64 = 2 \times 2 \times 2 \times 2 \times 2 \times 2$ Since, $a^m \times a^n = a^{m+n}$ $= 2^{6}$ So, $729 \times 64 = (3^6 \times 2^6)$ $= 3^6 \times 2^6$ (iv) Given: 768 Prime factors of $768 = 2 \times 3$ Since, $a^m \times a^n = a^{m+n}$ $= 2^8 \times 3$ **Q.5 Simplify:** (i) $((2^5)^2 \times 7^3)/(8^3 \times 7)$ (ii) $(25 \times 5^2 \times t^8)/(10^3 \times t^4)$ (iii) $(3^5 \times 10^5 \times 25) / (5^7 \times 6^5)$ Sol: $= ((2^5)^2 \times 7^3) / ((2^3)^3 \times 7)$ (i) Given: $((2^5)^2 \times 7^3)/(8^3 \times 7)$ Since, $(a^m)^n = a^{mn}$ $= (2^{5 \times 2} \times 7^3) / ((2^{3 \times 3} \times 7))$ $= (2^{10} \times 7^3)/(2^9 \times 7)$ Since, $a^m \div a^n = a^{m-n}$ $= (2^{10-9} \times 7^{3-1})$ $= 2 \times 7^{2}$ $= 2 \times 7 \times 7$ = 98 (ii) Given: $(25 \times 5^2 \times t^8) / (10^3 \times t^4) = (5^2 \times 5^2 \times t^8) / (5^3 \times 2^3 \times t^4)$ Since, $a^m \times a^n = a^{m+n}$ $= (5^{2+2} \times t^8) / (5^3 \times 2^3 \times t^4)$ $= (5^4 \times t^8) / (5^3 \times 2^3 \times t^4)$ Since, $a^m \div a^n = a^{m-n}$ $= (5^{4-3} \times t^{8-4})/2^{3}$ $= (5 \times t^4) / (2 \times 2 \times 2)$ $= (5t^4)/8$ (iii) Given: $(3^5 \times 10^5 \times 25)/(5^7 \times 6^5) = (3^5 \times 5^5 \times 2^5 \times 5^2)/(5^7 \times 2^5 \times 3^5)$ Since, $a^m \times a^n = a^{m+n}$ $= (3^5 \times 5^{5+2} \times 2^5) / (5^7 \times 2^5 \times 3^5)$ $= (3^5 \times 5^7 \times 2^5) / (5^7 \times 2^5 \times 3^5)$ Since, $a^m \div a^n = a^{m-n}$ $= (3^{5-5} \times 5^{7-7} \times 2^{5-5})$ $= (3^{\circ} \times 5^{\circ} \times 2^{\circ})$ Since, a°=1 $= 1 \times 1 \times 1$ = 1