

Cubes and Cube Roots: Exercise 7.1

Q.1 Which of the following numbers are not perfect cubes?

(i) 216 (ii) 128 (iii) 1000 (iv) 100 (v) 46656

Sol. (i) Firstly, we need to find out prime factors of 216:

$$2|216$$

$$2|108$$

$$2|54$$

$$3|27$$

$$3|9$$

$$3|3$$

$$1$$

So, prime factors of $216 = 2 \times 2 \times 2 \times 3 \times 3 \times 3$

Since in prime factors, each prime factor is appearing in triplet form.

Thus, 216 is a perfect cube.

(ii) Firstly, we need to find out prime factors of 128:

$$2|128$$

$$2|64$$

$$2|32$$

$$2|16$$

$$2|8$$

$$2|4$$

$$2|2$$

$$1$$

So, prime factors of $128 = 2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 2$

Since in prime factors, each prime factor is not appearing in triplet form.

Thus, 128 is not a perfect cube.

(iii) Firstly, we need to find out prime factors of 1000

$$2|1000$$

$$2|500$$

$$2|250$$

$$5|125$$

$$5|25$$

$$5|5$$

$$1$$

So, prime factors of $1000 = 2 \times 2 \times 2 \times 5 \times 5 \times 5$

Since in prime factors, each prime factor is appearing in triplet form.

Thus, 1000 is a perfect cube.

(iv) Firstly, we need to find out prime factors of 100:

$$2 \underline{100}$$

$$2 \underline{50}$$

$$5 \underline{25}$$

$$5 \underline{5}$$

$$\underline{1}$$

So, prime factors of 1000 = $2 \times 2 \times 5 \times 5$

Since in prime factors, each prime factor is not appearing in triplet form.
Thus, 100 is not a perfect cube.

(v) Firstly, we need to find out prime factors of 46656:

$$2 \underline{46656}$$

$$2 \underline{23328}$$

$$2 \underline{11664}$$

$$2 \underline{5832}$$

$$2 \underline{2916}$$

$$2 \underline{1458}$$

$$3 \underline{729}$$

$$3 \underline{243}$$

$$3 \underline{81}$$

$$3 \underline{27}$$

$$3 \underline{9}$$

$$3 \underline{3}$$

$$\underline{1}$$

So, prime factors of 46656 = $2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 3 \times 3 \times 3 \times 3 \times 3 \times 3$

Since in prime factors, each prime factor is appearing in triplet form.
Thus, 46656 is a perfect cube.

Q.2 Find the smallest number by which each of the following numbers must be multiplied to obtain a perfect cube.

(i) 243 (ii) 256 (iii) 72 (iv) 6750 (v) 100

Sol. (i) Firstly, we need to find out prime factors of 243:

$$3 \underline{243}$$

$$3 \underline{81}$$

$$3 \underline{27}$$

$$3 \underline{9}$$

$$3 \underline{3}$$

$$\underline{1}$$

So, prime factors of $243 = 3 \times 3 \times 3 \times 3 \times 3$

In prime factors, '3' is not in triplet form. So, we need one more '3' to be multiplied so that 243 becomes a cube number.

$$\begin{aligned} \text{So, } 243 \times 3 &= 3 \times 3 \times 3 \times 3 \times 3 \times 3 \\ &= 729 \end{aligned}$$

Which is a perfect cube.

Thus, the 3 is smallest number by which 243 should be multiplied to obtain a perfect cube.

(ii) Firstly, we need to find out prime factors of 256:

$$\begin{array}{r} 2|256 \\ 2|128 \\ 2|64 \\ 2|32 \\ 2|16 \\ 2|8 \\ 2|4 \\ 2|2 \\ |1 \end{array}$$

So, prime factors of $256 = 2 \times 2$

In prime factors, '2' is not in triplet form. So, we need one more '2' to be multiplied so that 256 becomes a cube number.

So, $256 \times 2 = 2 \times 2 = 512$ is a perfect cube.

Thus, the smallest number is 2 by which 256 should be multiplied to obtain a perfect cube.

(iii) Firstly, we need to find out prime factors of 72:

$$\begin{array}{r} 2|72 \\ 2|36 \\ 2|18 \\ 3|9 \\ 3|3 \\ |1 \end{array}$$

So, prime factors of $72 = 2 \times 2 \times 2 \times 3 \times 3$

In prime factors, '3' is not in triplet form. So, we need one more '3' to be multiplied so that 72 becomes a cube number.

$$\begin{aligned} \text{So, } 72 \times 3 &= 2 \times 2 \times 2 \times 3 \times 3 \times 3 \\ &= 216 \text{ is a perfect cube.} \end{aligned}$$

Thus, the smallest number is 3 by which 72 must be multiplied to obtain a perfect cube.

(iv) Firstly, we need to find out prime factors of 675:

$$3 \underline{675}$$

$$3 \underline{225}$$

$$3 \underline{75}$$

$$5 \underline{25}$$

$$5 \underline{5}$$

$$\underline{1}$$

So, prime factors of $675 = 3 \times 3 \times 3 \times 5 \times 5$

In prime factors, '5' is not in triplet form. So, we need one more '5' to be multiplied so that 675 becomes a cube number.

So, $675 \times 5 = 3 \times 3 \times 3 \times 5 \times 5 \times 5$

= 3375 is a perfect cube.

Thus, the smallest number is 5 by which 675 must be multiplied to obtain a perfect cube.

(v) Firstly, we need to find out prime factors of 100:

$$2 \underline{100}$$

$$2 \underline{50}$$

$$5 \underline{25}$$

$$5 \underline{5}$$

$$\underline{1}$$

So, prime factors of $100 = 2 \times 2 \times 5 \times 5$

In prime factors, '2 and 5' is not in triplet form. So, we need one more '2 and 5' to be multiplied so that 100 becomes a cube number.

So, $100 \times 2 \times 5 = 2 \times 2 \times 2 \times 5 \times 5 \times 5$

= 1000 is a perfect cube.

Thus, the smallest number is $2 \times 5 = 10$ by which 100 must be multiplied to obtain a perfect cube.

Q.3 Find the smallest number by which each of the following numbers must be divided to obtain a perfect cube.

(i) 81

(ii) 128

(iii) 135

(iv) 192

(v) 704

Sol. (i) Firstly, we need to find out prime factors of 81:

$$3 \underline{81}$$

$$3 \underline{27}$$

$$3 \underline{9}$$

$$3 \underline{3}$$

$$\underline{1}$$

So, prime factors of $81 = 3 \times 3 \times 3 \times 3$

In prime factors, '3' is not in triplet form. So, we need to reduce one '3' by dividing so that 81 becomes a cube number.

So, $81 \div 3 = 3 \times 3 \times 3$

= 27 is a perfect cube.

Thus, the smallest number is 3 by which 81 should be divided to obtain a perfect cube.

(ii) Firstly, we need to find out prime factors of 128:

$$\begin{array}{r}
 2|128 \\
 2|64 \\
 2|32 \\
 2|16 \\
 2|8 \\
 2|4 \\
 2|2 \\
 |1
 \end{array}$$

So, prime factors of $128 = 2 \times 2$

In prime factors, '2' is not in triplet form. So, we need to reduce one '2' by dividing so that 128 becomes a cube number.

$$\begin{aligned}
 \text{So, } 128 \div 2 &= 2 \times 2 \times 2 \times 2 \times 2 \times 2 \\
 &= 64 \text{ is a perfect cube}
 \end{aligned}$$

Thus, the smallest number is 2 by which 128 must be divided to obtain a perfect cube.

(iii) Firstly, we need to find out prime factors of 135:

$$\begin{array}{r}
 3|135 \\
 3|45 \\
 3|15 \\
 5|5 \\
 |1
 \end{array}$$

So, prime factors of $135 = 3 \times 3 \times 3 \times 5$

In prime factors, '5' is not in triplet form. So, we need to reduce one '5' by dividing so that 135 becomes a cube number.

$$\begin{aligned}
 \text{So, } 135 \div 5 &= 3 \times 3 \times 3 \\
 &= 27 \text{ is a perfect cube.}
 \end{aligned}$$

Thus, the smallest number is 5 by which 135 must be divided to obtain a perfect cube.

(iv) Firstly, we need to find out prime factors of 192:

$$\begin{array}{r}
 2|192 \\
 2|96 \\
 2|48 \\
 2|24 \\
 2|12 \\
 2|6 \\
 2|3 \\
 |1
 \end{array}$$

So, prime factors of $192 = 2 \times 3$

In prime factors, '3' is not in triplet form. So, we need to reduce one '3' by dividing so that 192 becomes a cube number.

$$\begin{aligned}
 \text{So, } 192 \div 3 &= 2 \times 2 \times 2 \times 2 \times 2 \times 2 \\
 &= 64 \text{ is a perfect cube.}
 \end{aligned}$$

Thus, the smallest number is 3 by which 192 must be divided to obtain a perfect cube.

(v) Firstly, we need to find out prime factors of 704:

$$2 \mid 704$$

$$2 \mid 352$$

$$2 \mid 176$$

$$2 \mid 88$$

$$2 \mid 44$$

$$2 \mid 22$$

$$11 \mid 11$$

$$\lfloor 1$$

So, prime factors of 704 = $2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 11$

In prime factors, '11' is not in triplet form. So, we need to reduce one '11' by dividing so that 704 becomes a cube number.

$$\text{So, } 704 \div 11 = 2 \times 2 \times 2 \times 2 \times 2 \times 2$$

= 64 is a perfect cube.

Thus, the smallest number is 11 by which 704 must be divided to obtain a perfect cube.

Q.4 Parikshit makes a cuboid of plasticine of sides 5 cm, 2 cm, 5 cm. How many such cuboids will he need to form a cube?

Sol. Given: sides of cuboidal plasticine: 5 cm, 2 cm, 5 cm.

Since, volume of cuboid = $l \times b \times h$

$$= 5 \text{ cm} \times 2 \text{ cm} \times 5 \text{ cm}$$

$$= (5 \times 5 \times 2) \text{ cm}^3$$

Since, in given volume two 5s and one 2 are not in a triplet form.

So, multiplying its volume by $2 \times 2 \times 5 = 20$, so that it will be a perfect cube.

$$\text{Therefore, } (5 \times 5 \times 2 \times 2 \times 2 \times 5) = (5 \times 5 \times 5 \times 2 \times 2 \times 2)$$

$$= 1000 \text{ is a perfect cube.}$$

Thus, 20 cuboids will be required to form a cube.