## **Circles: Exercise 10.6**

Q.1 Prove that the line of centres of two intersecting circles subtends equal angles at the two points of intersection.

**Sol. Given:** Let A and B be the two centres of two circles, which intersect each other at points C and D. **To prove:**  $\angle ACB = \angle ADB$ 

Construction: Join AC, AD, BD and BC.



**Proof:** Firstly, in  $\triangle ACB$  and  $\triangle ADB$ ,

- AC = AD (Radii of the same circle with center A)
- BC = BD (Radii of the same circle with center B)

AB = AB (Common side)

So, from SSS criterion of congruence,

```
\Delta ACB \cong \Delta ADB
```

 $\Rightarrow \angle ACB = \angle ADB$  (By C.P.C.T.) Hence Proved.

Q.2 Two chords AB and CD of lengths 5 cm and 11 respectively of a circle are parallel to each other and are on opposite sides of its centre. If the distance between AB and CD is 6 cm, find the radius of the circle.

**Sol.** Suppose, O is the centre of the given circle and let r be its radius. Now, draw  $OP \perp AB$  and  $OQ \perp CD$ .



Since, given that  $OP \perp AB$ ,  $OQ \perp CD$  and  $AB \parallel CD$ . So, points P, O and Q are collinear. So PO = 6 cm. Let OP = x then, OO = (6 - x) cm. Now, join OA and OC. Then, OA = OC = r. Since, as we know that perpendicular from the centre to a chord of the circle bisects the chord. So, AP = PB = 2.5 cm and CQ = QD = 5.5 cm. Now, in right  $\triangle QAP$  and  $\triangle OCQ$ ,  $OA^2 = OP^2 + AP^2$  $\Rightarrow$  r<sup>2</sup> = x<sup>2</sup> + (2.5)<sup>2</sup> .....(i) And  $OC^2 = OQ^2 + CQ^2$  $r^2 = (6-x)^2 + (5.5)^2$  ...... (ii) From eq. (i) & (ii),  $\Rightarrow x^{2} + (2.5)^{2} = (6-x)^{2} + (5.5)^{2}$  $\Rightarrow$  x<sup>2</sup> + 6.25 = 36 - 12x + x<sup>2</sup> + 30.25  $\Rightarrow 12x = 60$ 

⇒ x = 5 Now, Put x = 5 in (i),  $r^2 = 5^2 + (2.5)^2$ = 25 + 6.25 = 31.25 ⇒ r =  $\sqrt{31.25}$  = 5.6 (approx.) Thus, the radius of the circle = 5.6 cm (approx.)

**Q.3 The lengths of two parallel chords of a circle are 6 cm and 8 cm. If the smaller chord is at distance 4 cm from the centre, what is the distance of the other chord from the centre.** *Sol.* Given: Let AB = 6 cm and CD = 8 cm be two parallel chords of a circle with centre O and Let r be the radius of the circle.



**Construction:** construct  $OP \perp AB$  and  $OQ \perp CD$ . Since, given that AB || CD and OP  $\perp$  AB, OQ  $\perp$  CD. So, points O, Q and P are collinear. From the figure, OP = 4 cm, and P, Q are mid-points of chords AB and CD respectively. So, AP = PB =  $\frac{1}{2}$  AB = 3 cm and, CQ = QD =  $\frac{1}{2}$  CD = 4 cm Now, in right angled  $\triangle OAP$ , From the Pythagoras theorem,  $OA^2 = OP^2 + AP^2$  $\Rightarrow$  r<sup>2</sup> = 4<sup>2</sup> + 3<sup>2</sup> = 16 + 9= 25  $\Rightarrow$  r = 5 In right angled  $\triangle OCQ$ ,  $OC^2 = OQ^2 + CQ^2$  $\Rightarrow$  r<sup>2</sup> = OO<sup>2</sup> + 4<sup>2</sup>  $\Rightarrow 25 = 00^2 + 16$  $\Rightarrow OQ^2 = 25-16$  $OQ^2 = 9$  $\Rightarrow$  OQ = 3 Thus, the distance of chord CD from the centre = 3 cm.

Q.4 Let the vertex of an angle ABC be located outside a circle and let the sides of the angle intersect equal chords AD and CE with the circle. Prove that ∠ABC is equal to half the difference of the angles subtended by the chords AC and DE at the centre.

*Sol.* Given: Let the vertex B of an angle ABC be located outside the circle and AD = CE.

**To prove:** According to statement,  $\angle ABC = \frac{1}{2} (\angle AOC - \angle DOE)$ 

**Construction:** Join DC.



**Proof:** Since, as we know that an exterior angle of a triangle is equal to the sum of the opposite angles. So, in  $\Delta$ BDC,

 $\angle ADC = \angle DBC + \angle DCB.....(i)$ 

And also angle at the centre is twice the angle at a point on the remaining part of circle.

So, 
$$\angle ADC = \frac{1}{2} \angle AOC$$
 and  $\angle DCB = \frac{1}{2} \angle DOE$ .....(ii)  
From (i) and (ii),  
 $\frac{1}{2} \angle AOC = \angle DBC + \frac{1}{2} \angle DOE$   
Since,  $\angle DBC = \angle ABC$   
 $\frac{1}{2} \angle AOC = \angle ABC + \frac{1}{2} \angle DOE$   
 $\Rightarrow \angle ABC = \frac{1}{2} (\angle AOC - \angle DOE)$ ......(iii)

Thus, From equation (iii), we can say that ∠ABC is equal to half the difference of angles subtended by the chords AC and DE at the centre. Hence Proved.

## Q.5 Prove that the circle drawn with any side of a rhombus as diameter, passes through the point of intersection of its diagonals.

**Sol. Given:** Let ABCD be a rhombus and AC and BD are its two diagonals which bisect each other at right angles at point O. Now, draw the circle with side AB of a rhombus as diameter.

To prove: A circle drawn on side AB as diameter will pass through O.

**Construction:** From intersection point O draw PQ || AD and EF || AB.



**Proof:** Since, AB = DC (Sides of rhombus)

$$\Rightarrow \qquad \frac{1}{2}AB = \frac{1}{2}DC$$

AQ = DP (Since Q and P are mid-points of AB and CD respectively)

Similarly, AE = OQ $\Rightarrow AQ = OQ = QB$ 

 $\Rightarrow$  Here, A circle drawn with Q as centre and radius AQ passes through A, O and B. Thus obtained circle is the required circle which passes through A, O and B.

## Q.6 ABCD is a parallelogram. The circle through A, B and C intersect CD (produced if necessary) at E. Prove that AE = AD.

*Sol.* Given: ABCD is a parallelogram. A circle passes through points A, B and C intersect CD (produced if necessary) at E on the circumference of the circle.



To prove: AE = AD

**Proof:** To prove that we need to show  $\angle AED = \angle ADE$ . i.e.  $\triangle AED$  is an isosceles triangle. Since, from the figure ABCE is a cyclic quadrilateral. So,  $\angle AED + \angle ABC = 180^{\circ}$ ...... (i) Since, CDE is a straight line.  $\Rightarrow$ So,  $\angle ADE + \angle ADC = 180^{\circ}$ .... (ii) (Linear pair angles) Since,  $\angle ADC$  and  $\angle ABC$  are opposite angles of a parallelogram So,  $\angle ADC = \angle ABC$ From (i) & (ii),  $\angle AED + \angle ABC = \angle ADE + \angle ABC$  $\Rightarrow \angle AED = \angle ADE$ Now, in  $\triangle AED$ ,  $\angle AED = \angle ADE$ Now, in  $\triangle AED$ ,  $\angle AED = \angle ADE$ Now, in  $\triangle AED$ ,  $\angle AED = \angle ADE$ Hence Proved.

## Q.7 AC and BD are chords of a circle which bisect each other. Prove that (i) AC and BD are diameters, (ii) ABCD is a rectangle.

*Sol.* Given: AC and BD are the two chords of a circle with center O. Let they bisect each other at O. **To prove:** (i) AC and BD are diameters, (ii) ABCD is a rectangle. **Construction:** Join AB, BC, CD and AD.



(i) **Proof:** Firstly, in  $\triangle AOB$  and  $\triangle COD$ , OA = OC (Since, O is the mid-point of AC)  $\angle AOB = \angle COD$  (Vertically opposite angles) and, OB = OD (Since, O is the mid-point of BD) So, from SAS criterion of congruence,  $\triangle AOB \cong \triangle COD$   $\Rightarrow AB = CD$  (By C.P.C.T)  $\Rightarrow$  Therefore, arc(AB) = arc(CD) ......(i) Similarly, in  $\triangle AOD$  and  $\triangle BOC$ , arc(AD) = arc(BC) So, from eq. (i) & (ii), arc(AB) + arc(AD) = arc(CD) + arc(BC)  $\Rightarrow$  arc(DAB) = arc(BCD)  $\Rightarrow$  So, BD divides the circle into two parts Thus, BD is a diameter. Similarly, AB is a diameter. Hence Proved.

Q.8 Bisectors of angles A, B and C of a triangle ABC intersect its circumcircle at D, E and F respectively. Prove that the angles of the triangle DEF are  $90^{\circ} - \frac{1}{2}$  A,  $90^{\circ} - \frac{1}{2}$  B,  $90^{\circ} - \frac{1}{2}$  C.

*Sol.* Given: In a triangle ABC, bisectors of angles A, B and C intersect its circumcircle at D, E and F respectively.

**To prove:** 
$$\angle D = 90^{\circ} - \frac{\angle A}{2}$$
,  $\angle E = 90^{\circ} - \frac{\angle B}{2}$  and  $\angle F = 90^{\circ} - \frac{\angle C}{2}$ 

Construction: Join ED, DF, EF and FC



**Proof:** Firstly for  $\angle D = \angle EDF$ We can write as  $\angle EDF = \angle EDA + \angle ADF$ Since,  $\angle EDA$  and  $\angle EBA$  are the angles in the same segment of the circle subtended by the same arc AE. Hence  $\angle EDA = \angle EBA$ So,  $\angle EDF = \angle EBA + \angle ADF$ Similarly,  $\angle ADF$  and  $\angle FCA$  are the angles in the same segment of the circle subtended by the arc AF. Hence,  $\angle ADF = \angle FCA$ So,  $\angle EDF = \angle EBA + \angle FCA$ So,  $\angle EDF = \angle EBA + \angle FCA$ Since BE is the internal bisector of  $\angle B$  and CF is the internal bisector  $\angle C$  Therefore,  $\angle EDF = \frac{1}{2} \angle B + \frac{1}{2} \angle C$   $\angle D = \frac{\angle B + \angle C}{2}$ Similarly,  $\angle E = \frac{\angle C + \angle A}{2}$  and  $\angle F = \frac{\angle A + \angle B}{2}$   $\Rightarrow \Rightarrow \angle D = \frac{180^{\circ} - \angle A}{2}; \angle E = \frac{180^{\circ} - \angle B}{2}$  and  $\angle F = \frac{180^{\circ} - \angle C}{2}$  (Since,  $\angle A + \angle B = 180^{\circ}$ )  $\Rightarrow \angle D = 90^{\circ} - \frac{\angle A}{2}, \angle E = 90^{\circ} - \frac{\angle B}{2}$  and  $\angle F = 90^{\circ} - \frac{\angle C}{2}$   $\Rightarrow$  Thus, angles of the  $\triangle DEF: 90^{\circ} - \frac{1}{2}A, 90^{\circ} - \frac{1}{2}B$  and  $90^{\circ} - \frac{1}{2}C$ . Hence Proved.

Q.9 Two congruent circles intersect each other at points A and B. Through A any line segment PAQ is drawn so that P, Q lie on the two circles. Prove that BP = BQ.

*Sol.* Given: Let O and O' be the centre of two congruent circles intersect each other at points A and B. Through A any line segment <u>PAQ</u> is drawn so that P, Q lie on the two circles.



**To prove:** BP = BQ **Proof:** Since, AB is a common chord of these congruent circles. So, arc (ACB) = arc (ADB)  $\angle$ BPA =  $\angle$ BQA (Angle made by the same length arc)

 $\Rightarrow$ Thus, BP = BQ. Hence Proved.

Q.10 In any triangle ABC, if the angle bisector of ∠A and perpendicular bisector of BC intersect, prove that they intersect on the circumcircle of the triangle ABC.

**Given:** In a triangle ABC inscribed in a circle with centre at O, E is a point on the circle such that AE is the internal bisector of ∠BAC and D is the mid-point of side BC.



**To Prove:** DE is the perpendicular bisector of BC i.e.  $\angle$ BDE =  $\angle$ CDE = 90°.

**Construction:** Join BE and EC. **Proof:** Firstly, in  $\triangle$ BDE and  $\triangle$ CDE, Since,  $\angle$ BAE =  $\angle$ CAE, Therefore, arc (BE) = arc (CE)  $\Rightarrow$  Chord BE = chord CE BE = CE BD = CD (Given) DE = DE (Common side) So, from SSS criterion of congruence,  $\triangle$ BDE  $\cong \triangle$ CDE  $\Rightarrow \angle$ BDE =  $\angle$ CDE (By C.P.C.T.) Also,  $\angle$ BDE +  $\angle$ CDE = 180° (Linear pair angles) So,  $\angle$ BDE =  $\angle$ CDE = 90° Thus, DE is the perpendicular bisector of BC. Hence Proved.