

Q.2 If two equal chords of a circle intersect within the circle, prove that the segments of one chord are equal to corresponding segments of the other chord.

Sol. Given: Let AB and CD be the chords of a circle with centre O. These chords AB and CD intersect at point P and AB = CD.

To prove: (i) AP = PD (ii) PB = CP. **Construction**: Firstly, construct $OM \perp AB$, $ON \perp CD$ and join OP.

Proof: AM = MB = $\frac{1}{2}$ AB (Since, perpendicular from centre bisects the chord) $CN = ND = \frac{1}{2}CD$ (Since, perpendicular from centre bisects the chord) So, AM = ND and MB = CN(i) (Since, bisectors of equal chords are equal) Now, in $\triangle OMP$ and $\triangle ONP$, OM = ON(Since, as we know that equal chords of a circle are equidistant from the centre) $\angle OMP = \angle ONP$ (Since, $OM \perp AB$, $ON \perp CD$) (Common side) OP = OPSo, from RHS' criterion of congruence, ∆OMP≅∆ONP \Rightarrow So, MP = PN ... (ii) (By C.P.C.T.) By adding (i) and (ii), $\dot{AM} + MP = ND + PN$ AP = PD.....Hence Proved (i) ⇒ By subtracting (ii) from (i), MB - MP = CN - PNPB = CP.....Hence Proved (ii) ⇒

Q.3 If two equal chords of a circle intersect within the circle, prove that the line joining the point of intersection to the centre makes equal angles with the chords.

Sol. Given: Let AB and CD be the chords of a circle with centre O. These chords AB and CD intersect at P and AB = CD.

To prove: $\angle OPE = \angle OPF$

Construction: Construct OE \perp AB and OF \perp CD. Now, join OP.

Proof: Firstly, in $\triangle OEP$ and $\triangle OFP$,

 $\angle OEP = \angle OFP$ (Since, OE \perp AB and OF \perp CD, each = 90°)

OP = OP (Common Side)

OE = OF (Since, as we know that equal chords of a circle are equidistant from the centre) So, from RHS criterion of congruence,

 $\Delta OEP \cong \Delta OFP$

 $\Rightarrow \angle OPE = \angle OPF (By C.P.C.T.)$ Hence Proved.

Q.4 If a line intersects two concentric circles (circles with the same centre) with centre O at A, B, C and D, prove that AB = CD (see figure)

Sol. Given: let *l* be the line which intersects two concentric circles with centre O at A, B, C and D. To prove: AB = CD

Construct: Draw OM perpendicular from O on line *l*.

Q.5 Three girls Reshma, Salma and Mandip are playing a game by standing on a circle of radius 5 m drawn in a park. Reshma throws a ball to Salma, Salma to Mandip, Mandip to Reshma. If the distance between Reshma and Salma and between Salma and Mandip is 6 m each, what is the distance between Reshma and Mandip?

Sol. Let B, A and C be the points on circle of radius 5 cm, where three girls Reshma, Salma and Mandip are standing respectively.

Since, AB = 6 cm and AC = 6 cm.

If AB and AC are two equal chords of a circle, then the centre of the circles lies on the bisector of \angle BAC. So, OA is the bisector of \angle BAC.

Since the internal bisector of an angle divides the opposite sides in the ratio of the sides containing the angle. So, M divides BC in the ratio 6:6=1:1

Therefore, we can say M is the middle point of BC.

 $\Rightarrow OM \perp BC.$ Now, in right angled $\triangle ABM$, $AB^2 = AM^2 + BM^2$ $\Rightarrow 36 = AM^2 + BM^2$

```
\Rightarrow BM^2 = 36 - AM^2 \dots (i)
```

```
And in the right angled \triangle OBM,

OB^2 = OM^2 + BM^2

\Rightarrow 25 = (OA - AM)^2 + BM^2

\Rightarrow BM^2 = 25 - (OA - AM)^2

\Rightarrow BM^2 = 25 - (5 - AM)^2 \dots (ii)

So, from (i) and (ii),

36 - AM^2 = 25 - (5 - AM)^2

\Rightarrow 11 - AM^2 + (5 - AM)^2 = 0

\Rightarrow 11 - AM^2 + 25 - 10AM + AM^2 = 0

\Rightarrow 10AM = 36
```

 $\Rightarrow AM = 3.6$ Now, putting the value of AM = 3.6 in (i) $BM^{2} = 36 - (3.6)^{2}$ = 36 - 12.96 $\Rightarrow BM = \sqrt{36 - 12.96}$ $= \sqrt{23.04} = 4.8 \text{cm}$ $\Rightarrow BC = 2BM$ $= 2 \times 4.8 = 9.6 \text{cm}$ therefore, the distance between Reshma and Mandip is 9.6 cm

Q.6 A circular park of radius 20 m is situated in a colony. Three boys Ankur, Syed and David are sitting at equal distance on its boundary each having a toy telephone in his hands to talk each other. Find the length of the string of each phone.

Sol. Let A, B and C be the points on a circular path of radius 20 cm, where three boys Ankur, Sayed and David are sitting at equal distance. So, ABC is an equilateral triangle of side 2x metres.

$$\Rightarrow x = 10\sqrt{3}$$

Since, BC = 2BM
= 2x

$$=20\sqrt{3}$$

Thus, the length of each string is $20\sqrt{3}$ m