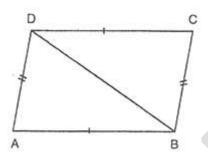
Area of Parallelogram

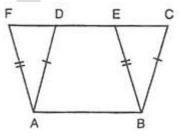
(1) Prove that a diagonal of a parallelogram divides it into two triangles of equal area. Given: A parallelogram ABCD in which BD is one of the diagonals. To prove: $ar(\Delta ABD) = ar(\Delta CDB)$



Proof: Since two congruent geometrical figures have equal area. Therefore, in order to prove that $ar(\Delta ABD) = ar(\Delta CDB)$ it is sufficient to show that $\Delta ABD \cong \Delta CDB$ In Δs ABD and CDB, we have AB = CDAD = CBAnd, BD = DBSo, by SSS criterion of congruence, we have $\Delta ABD \cong \Delta CDB$ Hence, $ar(\Delta ABD) = ar(\Delta CDB)$

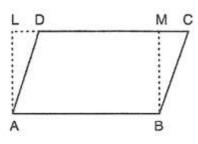
(2) Prove that parallelograms on the same base and between the same parallels are equal in area. Given: Two parallelograms ABCD and ABEF, which have the same base AB and which are between the same parallel lines AB and FC.

To prove: ar(parallelogramABCD) = ar(parallelogramABCD)



Proof: In Δ s ADF and BCE, we have AD = BC AF = BEAnd, $\angle DAF = \angle CBE$ [:: AD || BC and AF || BE] So, by SAS criterion of congruence, we have $\triangle ADF \cong \triangle BCE$ $ar(\triangle ADF) = ar(\triangle BCE)$ (i) Now, $ar(\text{parallelogram ABCD}) = ar(\text{sq. ABED}) + ar(\triangle BCE)$ $ar(\text{parallelogram ABCD}) = ar(\text{sq. ABED}) + ar(\triangle ADF)$ [Using(i)] ar(parallelogram ABCD) = ar(parallelogram ABEF)Hence, ar(parallelogram ABCD) = ar(parallelogram ABEF) (3) Prove that the area of a parallelogram is the product of its base and the corresponding altitude. Given: A parallelogram ABCD in which AB is the base and AL the corresponding altitude. To prove: $ar(parallelogram ABCD) = AB \times AL$

Construction: Complete the rectangle ALMB by drawing BM⊥CD.



Proof: Since ar(parallelogram ABCD) and rectangle ALMB are on the same base and between the same parallels.

ar(parallelogram ABCD)

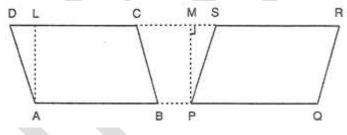
= ar(rect. ALMB)

= $AB \times AL$ [By rect. Area axiom area of a rectangle = Base X Height] Hence, ar(parallelogram ABCD) = $AB \times AL$

(4) Prove that parallelograms on equal bases and between the same parallels are equal in area.

Given: Two parallelograms ABCD and PQRS with equal bases AB and PQ and between the same parallels AQ and DR.

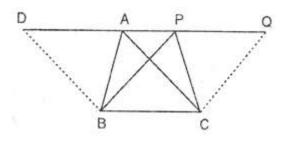
To prove: ar(parallelogram ABCD) = ar(parallelogram PQRS) **Construction:** Draw AL \perp DR and PM \perp DR



Proof: Since $AB \perp DR$, $AL \perp DR$ and $PM \perp DR$ AL = PMNow, ar(parallelogram ABCD) = $AB \times AL$ ar(parallelogram ABCD) = $PQ \times PM$ [AB = PQ and AL = PM] ar(parallelogram ABCD) = ar(parallelogram PQRS)

(5) Prove that triangles on the same bases and between the same parallels are equal in area. Proof: We have,

BD || CA And, BC || DA sq. BCAD is a parallelogram.



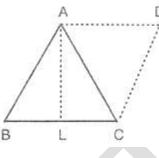
Similarly, sq. BCQP is a parallelogram.

Now, parallelograms ECQP and BCAD are on the same base BC, and between the same parallels. ar(parallelogram BCQP) = ar(parallelogram BCAD)(i) We know that the diagonals of a parallelogram divides it into two triangles of equal area. $ar(\Delta PBC) = 12ar(parallelogram BCQP)$ (ii) And, $ar(\Delta ABC) = 12ar(parallelogram BCAQ)$ (iii) Now, ar(parallelogram BCQP) = ar(parallelogram BCAD) [From (i)] 12ar(parallelogram BCQP) = 12ar(parallelogram BCAD) $ar(\Delta ABC) = ar(\Delta PBC)$ [From (ii) and (iii)] Hence, $ar(\Delta ABC) = ar(\Delta PBC)$

(6) Prove that the area of a triangle is half the product of any of its sides and the corresponding altitude. Given: A ΔABC in which AL is the altitude to the side BC.

To prove: $ar(\Delta ABC) = 12(BC \times AL)$

Construction: Through C and A draw CD || BA and AD || BC respectively, intersecting each other at D.



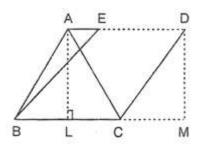
Proof: We have, BA || CD And, AD || BC BCDA is a parallelogram. Since AC is a diagonal of parallelogram BCDA. $ar(\Delta ABC) = 12ar(parallelogram BCAD)$

 $ar(\Delta ABC) = 12(BC \times AL)$ [BC is the base and AL is the corresponding altitude of parallelogram BCDA]

(7) Prove that if a triangle and a parallelogram are on the same base and between the same parallels, then the area of the triangle is equal to the half of the parallelogram.

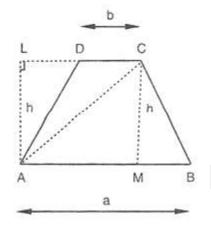
Given: A \triangle ABC and a parallelogram BCDE on the same base BC and between the same parallel BC and AD.

To prove: $ar(\Delta ABC) = 12ar(parallelogram BCDE)$ **Construction:** Draw ALLBC and DMLBC, meeting BC produced in M.



Proof: Since A, E and D are collinear and BC || AD AL = DM(i) Now, $ar(\Delta ABC) = 12(BC \times AL)$ $ar(\Delta ABC) = 12(BC \times DM)$ [AL = DM (from (i)] $ar(\Delta ABC) = 12ar(parallelogram BCDE)$ (8) Prove that the area of a trapezium is half the product of its height and the sum of parallel sides. Given: A trapezium ABCD in which AB || DC; AB = a, DC = b and AL = CM = h, where AL \perp DC and CM \perp AB

To prove: $ar(trap. ABCD) = 12h \times (a+b)$ **Construction:** Join AC

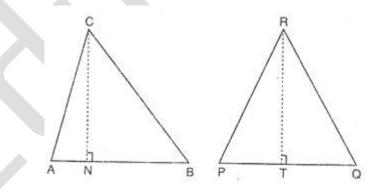


Proof: We have, ar(trap. ABCD) = $ar(\Delta ABC) + ar(\Delta ACD)$ ar(trap. ABCD) = $12(AB \times CM) + 12(DC \times AL)$ ar(trap. ABCD) = $12ah \times 12bh$ [AB = a and DC = b] ar(trap. ABCD) = $12h \times (a+b)$

(9) Prove that triangles having equal areas and having one side of one of the triangles, equal to one side of the other, have their corresponding altitudes equal.

Given: Two triangles ABC and PQR such that: $ar(\Delta ABC) = ar(\Delta PQR)$ AB = PQ

CN and RT are the altitudes corresponding to AB and PQ respectively of the two triangles. To prove: CN = RT

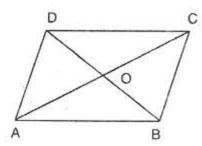


Proof: In $\triangle ABC$, CN is the altitude corresponding to side AB. ar($\triangle ABC$) = 12(AB × CN)(i) Similarly, we have, ar($\triangle PQR$) = 12(PQ × RT)(ii) Now, ar($\triangle ABC$) = ar($\triangle PQR$) 12(AB × CN) = 12(PQ × RT) (AB × CN) = (PQ × RT) (AB × CN) = (PQ × RT) (PQ × CN) = (PQ × RT) [AB = PQ (Given)] CN = RT

(10) Prove that if each diagonal of a quadrilateral separates it into two triangles of equal area, then the quadrilateral is a parallelogram.

Given: A quadrilateral ABCD such that its diagonals AC and BD are such that $ar(\Delta ABD) = ar(\Delta CDB)$ and $ar(\Delta ABC) = ar(\Delta ACD)$

To prove: Quadrilateral ABCD is a parallelogram.

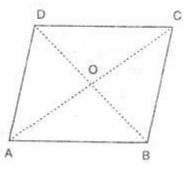


Proof: Since diagonal AC of the quadrilateral ABCD separates it into two triangles of equal area. Therefore, ar(AABC) = ar(AACD) (i)

 $ar(\Delta ABC) = ar(\Delta ACD)$ (i) But, $ar(\Delta ABC) + ar(\Delta ACD) = ar(quad. ABCD)$ $2ar(\Delta ABC) = ar(quad. ABCD)$ [Using (i)] $ar(\Delta ABC) = 12ar(quad. ABCD) \dots (ii)$ Since diagonal BD of the quadrilateral ABCD separates it into triangles of equal area. $ar(\Delta ABD) = ar(\Delta BCD)$ (iii) But, $ar(\Delta ABD) + ar(\Delta BCD) = ar(quad. ABCD)$ $2ar(\Delta ABD) = ar(quad. ABCD)$ [Using (iii)] $ar(\Delta ABD) = 12ar(quad. ABCD) \dots (iv)$ From (ii) and (iv), we get $ar(\Delta ABC) = ar(\Delta ABD)$ Since Δs ABC and ABD are on the same base AB. Therefore they must have equal corresponding altitudes. i.e. Altitude from C of $\triangle ABC = Altitude$ from D of $\triangle ABD$ DC || AB Similarly, AD || BC Hence, quadrilateral ABCD is a parallelogram.

(11) Prove that the area of a rhombus is half the product of the lengths of its diagonals.

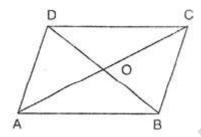
Given: A rhombus ABCD whose diagonals AC and BD intersect at 0. **To prove:** $ar(rhombus ABCD) = 12(AC \times BD)$



Proof: Since the diagonals of a rhombus intersect at right angles. Therefore, OB \perp AC and OD \perp AC ar(rhombus) = ar(Δ ABC) + ar(Δ ADC) ar(rhombus) = 12(AC × BO) + 12(AC × DO) $ar(rhombus) = 12(AC \times (BO + DO))$ $ar(rhombus) = 12(AC \times BD)$

(12) Prove that diagonals of a parallelogram divide it into four triangles of equal area. Given: A parallelogram ABCD. The diagonals AC and BD intersect at O.

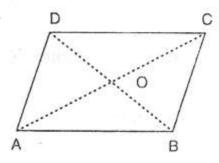
To prove: $ar(\Delta OAB) = ar(\Delta OBC) = ar(\Delta OCD) = ar(\Delta AOD)$



Proof: Since the diagonals of a parallelogram bisect each other at the point of intersection. OA = OC and OB = ODAlso, the median of a triangle divides it into two equal parts. Now, in $\triangle ABC$, BO is the median. $ar(\triangle OAB) = ar(\triangle OBC) \dots (i)$ In $\triangle BCD$, CO is the median $ar(\triangle OBC) = ar(\triangle OCD) \dots (ii)$ In $\triangle ACD$, DO is the median $ar(\triangle OCD) = ar(\triangle AOD) \dots (iii)$ From (i), (ii) and (iii), we get $ar(\triangle OAB) = ar(\triangle OBC) = ar(\triangle OCD) = ar(\triangle AOD)$

(13) Prove that if the diagonals AC and BD of a quadrilateral ABCD, intersect at O and separate the quadrilateral into four triangles of equal area, then the quadrilateral ABCD is parallelogram. Given: A quadrilateral ABCD such that its diagonals AC and BD intersect at O and separate it into four parts such that

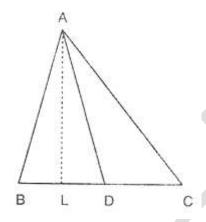
 $ar(\Delta OAB) = ar(\Delta OBC) = ar(\Delta OCD) = ar(\Delta AOD)$ **To prove:** Quadrilateral ABCD is a parallelogram.



Proof: We have, $ar(\Delta AOD) = ar(\Delta BOC)$ $ar(\Delta AOD) + ar(\Delta AOB) = ar(\Delta BOC) + ar(\Delta AOB)$ $ar(\Delta ABD) = ar(\Delta ABC)$ Thus, Δs ABD and ABC have the same base AB and have equal areas. So, their corresponding altitudes must be equal. Altitude from ΔABD Altitude from C of ΔABC DC || AB similarly, we have, AD || BC. Hence, quadrilateral ABCD is a parallelogram.

(14) Prove that a median of a triangle divides it into two triangles of equal area.

Given: A \triangle ABC in which AD is the median. **To prove:** ar(\triangle ABD) = ar(\triangle ADC) **Construction:** Draw AL \perp BC.



Proof: Since AD is the median of \triangle ABC. Therefore, D is the midpoint of BC. BD = DC BD × AL = DC × AL [Multiplying both sides by AL] 12(BD × AL) = 12(DC × AL) ar(\triangle ABD) = ar(\triangle ADC) ALITER Since \triangle s ABD and ADC have equal bases and the same altitude AL. ar(\triangle ABD) = ar(\triangle ADC)