

(iii) Obtuse angle: It is the angle whose measure is greater 90° than but less than 180°.

____**,**

(iv) Straight angle: It is the angle whose measure is equal to 180°.

(v) Reflex angle: It is the angle whose measure is greater 180° than but less than 360°.

(vi) Complementary angles: The two angles whose sum is 90° are known as complementary angles.

For the figure shown above, the sum of angles a & b is 90°, hence these two angles are complementary angles.

(vii) Supplementary angles: The two angles whose sum is 180° are known as supplementary

angles.

For the figure shown above, sum of the angles 45° and 135° is 180°, hence these two angles are supplementary angles.

(viii) Adjacent angles: Two angles are said to be adjacent if they have a common vertex, a common arm and their non-common arms are on different side of the common arm. When two angles are adjacent, then their sum is always equal to the angle formed by the two non-common arms.

For the figure shown above, \angle ABD and \angle DBC are adjacent angles. Here, ray BD is the common arm and B is the common vertex. And ray BA and BC are non-common arms. Here, \angle ABC = \angle ABD + \angle DBC.

(ix) Linear pair of angles: Two angles are said to be linear if they are adjacent angles formed by two intersecting lines. The linear pair of angles must add up to 180°.

For the figure shown above, \angle ABD and \angle DBC are called linear pair of angles.

(x) Vertically Opposite angles: These are the angles opposite each other when two lines cross.

For the figure shown above, \angle AOD and \angle BOC are vertically opposite angles. Also, \angle AOC and \angle BOD are vertically opposite angles.

(xi) Intersecting lines: These are the lines which cross each other.

For the figure shown above, lines PQ and RS are the intersecting lines.

(xii) Non-intersecting lines: These are the lines which do not cross each other.

For the figure shown above, lines PQ and RS are the non-intersecting lines.

(6) Pair of Angles:

Axiom 1: If a ray stands on a line, then the sum of two adjacent angles so formed is 180°. *Axiom 2*: If the sum of two adjacent angles is 180°, then the non-common arms of the angles form a line.

Theorem 1: If two lines intersect each other, then the vertically opposite angles are equal. *Proof*:

Suppose AB and CD are two lines intersecting each other at point 0. Here, the pair of vertically opposite angles formed are (i) \angle AOC and \angle BOD (ii) \angle AOD and \angle BOC And we need to prove that \angle AOC = \angle BOD and \angle AOD = \angle BOC. Here, ray OA stands on line CD. Hence, \angle AOC + \angle AOD = 180° as per linear pair axiom. Similarly, \angle AOD + \angle BOD = 180°. On equating both, we get, \angle AOC + \angle AOD = \angle AOD + \angle BOD Thus, \angle AOC = \angle BOD similarly, it can be proved that \angle AOD = \angle BOC.

(7) Some Examples: *For Example*: \angle PQR = \angle PRQ, then prove that \angle PQS = \angle PRT.

S Q R T From the figure, we can see that ∠ PQS and ∠ PQR forms a linear pair. Hence, ∠ PQS +∠ PQR = 180° i.e. ∠ PQS = 180° - ∠ PQR - (i) Also, from the figure, we can see that ∠ PRQ and ∠ PRT forms a linear pair. Hence, ∠ PRQ +∠ PRT = 180° i.e. ∠ PRT = 180° - ∠ PRQ Given, ∠ PQR = ∠ PRQ Therefore, ∠ PRT = 180° - ∠ PQR - (ii) From (i) and (ii), ∠ PQS = ∠ PRT = 180° - ∠ PQR Thus, ∠ PQS = ∠ PRT

For Example: OP, OQ, OR and OS are four rays. Prove that \angle POQ + \angle QOR + \angle SOR + \angle POS = 360°.

Firstly, let us make ray OT as shown in figure below to make a line TOQ.

R

From the above figure, we can see that, ray OP stands on line TOQ. Hence, as per linear pair axiom, \angle TOP + \angle POQ = 180° - (i) Similarly, from the figure, we can see that, ray OS stands on line TOQ. Hence, as per linear pair axiom, \angle TOS + \angle SOQ = 180° But, from the figure, \angle SOQ = \angle SOR + \angle QOR So, \angle TOS + \angle SOR + \angle QOR = 180° - (ii) On adding (i) & (ii), we get, \angle TOP + \angle POQ + \angle TOS + \angle SOR + \angle QOR = 360° From the figure, \angle TOP + \angle TOS = \angle POS Therefore, \angle POQ + \angle QOR + \angle SOR + \angle POS = 360°.

(8) Parallel lines and a Transversal:

Transversal: It is a line which intersects two or more lines at distinct points.

m

Here, line / intersects lines m and n at P and Q respectively. Thus, line / is transversal for lines m and n.
(a) Exterior angles: These are the angles outside the parallel lines.

Here, $\angle 1$, $\angle 2$, $\angle 7$ and $\angle 8$ are exterior angles.

(b) Interior angles: These are the angles inside the parallel lines.

Here, $\angle 3$, $\angle 4$, $\angle 5$ and $\angle 6$ are interior angles.

(c) Corresponding angles: These are angles in the matching corners.

Here, (i) $\angle 1$ and $\angle 5$ (ii) $\angle 2$ and $\angle 6$ (iii) $\angle 4$ and $\angle 8$ (iv) $\angle 3$ and $\angle 7$ are corresponding angles. *(d) Alternate interior angles:* The angles that are formed on opposite sides of the

transversal and inside the two lines are alternate interior angles.

Here, (i) $\angle 4$ and $\angle 6$ (ii) $\angle 3$ and $\angle 5$ are alternate interior angles.

(e) Alternate exterior angles: The angles that are formed on opposite sides of

the transversal and outside the two lines are alternate exterior angles.

Here, (i) $\angle 1$ and $\angle 7$ (ii) $\angle 2$ and $\angle 8$ are alternate exterior angles.

(f) Interior angles on the same side of the transversal: (i) $\angle 4$ and $\angle 5$ (ii) $\angle 3$ and $\angle 6$. They are also known as consecutive interior angles or allied angles or co-interior angles.

Axiom 1: If a transversal intersects two parallel lines, then each pair of corresponding angles is equal. **Axiom 2:** If a transversal intersects two lines such that a pair of corresponding angles is equal, then the two lines are parallel to each other.

Theorem 1: If a transversal intersects two parallel lines, then each pair of alternate interior angles is equal.

Theorem 2: If a transversal intersects two lines such that a pair of alternate interior angles is equal, then the two lines are parallel.

Theorem 3: If a transversal intersects two parallel lines, then each pair of interior angles on the same side of the transversal is supplementary.

Theorem 4: If a transversal intersects two lines such that a pair of interior angles on the same side of the transversal is supplementary, then the two lines are parallel.

(9) Lines Parallel to the Same Line:

Theorem 1: Lines which are parallel to the same line are parallel to each other. *For Example*: If AB || CD, EF \perp CD and \angle GED = 126°, find \angle AGE, \angle GEF and \angle FGE.

From the figure, we can see that, \angle AGE and \angle GED forms alternate interior angles. Therefore, \angle AGE = \angle GED = 126° From the figure, we can see that, \angle GEF = \angle GED – \angle FED = 126° – 90° = 36° Again from the figure, we can see that, \angle FGE and \angle AGE forms linear pair. Therefore, \angle FGE + \angle AGE = 180° \angle FGE = 180° – 126° = 54°.

For Example: AB || CD and CD || EF. Also, EA \perp AB. If \angle BEF = 55°, find the values of x, y and z.

From the figure, we can see that, \angle y and \angle DEF forms interior angles on the same side of the transversal ED.

Therefore, $y + 55^{\circ} = 180^{\circ} => y = 180^{\circ} - 55^{\circ} = 125^{\circ}$ From the figure, we can see that, AB || CD, so as per corresponding angles axiom x = y. So, $x = 125^{\circ}$ From the figure, we can see that, AB || CD and CD || EF, hence, AB || EF. Therefore, $\angle EAB + \angle FEA = 180^{\circ} - (i)$ From the figure, $\angle FEA = \angle FEB + \angle BEA$. Substituting in (i), we get, $\angle EAB + \angle FEB + \angle BEA = 180^{\circ}$ $90^{\circ} + z + 55^{\circ} = 180^{\circ}$ i.e. $z = 35^{\circ}$.

(10) Angle Sum Property of a Triangle:

Theorem 1: The sum of the angles of a triangle is 180°. **Theorem 2:** If a side of a triangle is produced, then the exterior angle so formed is equal to the sum of the two interior opposite angles. *Proof*:

For the given triangle PQR, we need to prove that $\angle 1 + \angle 2 + \angle 3 = 180^{\circ}$. Firstly, we will draw line XPY parallel to QR passing through P as shown in figure below.

From the figure, we can see that $\angle 4 + \angle 1 + \angle 5 = 180^{\circ} - (1)$ Here, XPY || QR and PQ, PR are transversals. So, $\angle 4 = \angle 2$ and $\angle 5 = \angle 3$ (Pairs of alternate angles). Substituting $\angle 4$ and $\angle 5$ in (1), we get, $\angle 1 + \angle 2 + \angle 3 = 180^{\circ}$. Hence, the sum of the angles of a triangle is 180°.

For Example: The side QR of \triangle PQR is produced to a point S. If the bisectors of \angle PQR and \angle PRS meet at point T, then prove that \angle QTR = $1/2 \angle$ QPR.

We know that, the exterior angle of triangle is equal to the sum of the two interior angles. So, \angle TRS = \angle TQR + \angle QTR i.e. \angle QTR = \angle TRS - \angle TQR - (i) Similarly, \angle SRP = \angle QPR + \angle PQR - (ii) From the figure, \angle SRP = 2 \angle TRS and \angle PQR = 2 \angle TQR Hence, equation (ii) becomes, $2 \angle$ TRS = \angle QPR + 2 \angle TQR \angle QPR = 2 \angle TRS - 2 \angle TQR => $\frac{1}{2} \angle$ QPR = \angle TRS - \angle TQR - (iii) On equating (i) and (iii), we get, \angle QTR = $\frac{1}{2} \angle$ QPR.