Real Numbers

(1) Euclid's Division Lemma:

Theorem: Given positive integers a and b, there exist unique integers q and r satisfying a = bq + r, $o \le r < b$.

(2) Euclid's division algorithm: To obtain the HCF of two positive integers, say c and d, with c > d, follow the steps below:

Step 1: Apply Euclid's division lemma, to c and d. So, we find whole numbers, q and r such that c = dq + r, $o \le r < d$.

Step 2: If r = 0, d is the HCF of c and d. If $r \neq 0$, apply the division lemma to d and r.

Step 3: Continue the process till the remainder is zero. The divisor at this stage will be the required HCF.

For Example: Use Euclid's division algorithm to find the HCF of 135 and 225.

Step 1: Here 225 > 135, on applying the division lemma to 225 and 135, we get $225 = 135 \times 1 + 90$ Step 2: Since, remainder $\neq 0$, we again apply division lemma to 135 and 90, we get $135 = 90 \times 1 + 45$

Step 3: Again, applying division lemma to 90 and 45, we get $90 = 45 \times 2 + 0$ The remainder has become zero. And since the divisor at this step is 45, the HCF of 135 and 225 is 45.

For Example: Show that any positive odd integer is of the form 4q + 1 or 4q + 3, where q is some integer.

Let *a* be any positive odd integer. And we apply division algorithm with *a* and *b* = 4. As $0 \le r < 4$, the possible remainders could be 0, 1, 2 and 3. So, a can be 4q, or 4q + 1, or 4q + 2, or 4q + 3, where q is the quotient. Now, since *a* is odd, so *a* cannot be 4q or 4q + 2 (as both are divisible by 2).

Hence, any odd integer is of the form 4q + 1 or 4q + 3.

(3) The Fundamental Theorem of Arithmetic:

Theorem: Every composite number can be expressed (factorised) as a product of primes, and this factorisation is unique, apart from the order in which the prime factors occur. In general, given a composite number x, we factorise it as $x = p_1 p_2 ... p_n$, where $p_1, p_2, ..., p_n$ are primes and written in ascending order, i.e., $p_1 \le p_2 \le ... \le p_n$. If we combine the same primes, we will get powers of primes.

For Example: The prime factors of $32760 = 2 \times 2 \times 2 \times 3 \times 3 \times 5 \times 7 \times 13 = 2^3 \times 3^2 \times 5 \times 7 \times 13$.

For Example: Find the HCF and LCM of 96 and 404 by prime factorisation method. The prime factorisation of 96 is $2^5 \times 3$. And that of 404 is $2^2 \times 101$. Hence, HCF of 96 and 404 will be $2^2 = 4$. Now, LCM (96, 404) = (96 x 404)/(HCF (96, 404)) = (96 x 404)/4 = 9696.

For Example: Check whether 6^n can end with the digit 0 for any natural number n. If a number ends with digit 0, then, it must be divisible by 10 or in other words, it will be divisible by 2 and 5 as $10 = 2 \times 5$. Now, prime factorisation of $6^n = (2 \times 3)^n$

Here, 5 is not in the prime factorisation of 6ⁿ. Hence, for any value of n, 6ⁿ will not be divisible by 5.

Thus, 6ⁿ cannot end with the digit 0 for any natural number n.

(4) Revisiting Irrational Numbers:

Irrational Number : are the numbers which cannot be written in p/q form, where p and q are integers and $q \neq 0$.

Theorem 1: Let p be a prime number. If p divides a², then p divides a, where a is a positive integer.

Proof: Suppose the prime factorisation of a is as follows:

(i) $a = p_1 p_2 \dots p_n$, where $p_1, p_2, \dots p_n$ are primes.

(ii) On squaring both the sides, we get,

(iii) $a^2 = (p_1p_2....p_n) (p_1p_2....p_n) = p_1^2p_2^2....p_n^2$.

(iv) It is given that p divides a². Hence, we can say that p is one of the prime factors of a² as per the Fundamental Theorem of Arithmetic.

(v) However, as per the uniqueness part of the Fundamental Theorem of Arithmetic, we can deduce that the only prime factors of a^2 are $p_1p_2....p_n$. Thus, p is one of $p_1p_2....p_n$. Since, $a = p_1p_2....p_n$, divides a.

Theorem 2: $\sqrt{2}$ is irrational.

Proof: We shall start by assuming $\sqrt{2}$ as rational. In other words, we need to find integers x and y such that $\sqrt{2} = x/y$.

(i) Let x and y have a common factor other than 1, and so we can divide by that common factor and assume that x and y are coprime. So, $y\sqrt{2} = x$.

(ii) Squaring both side, we get, $2y^2 = x^2$.

(iii) Thus, 2 divides x². and by theorem we can say that 2 divides x.

(iv) Hence, x = 2z for some integer z.

(v) Substituting x, we get, $2x^2 = 4z^2e$. $y^2 = 4z^2$; which means y^2 is divisible by 2, and so y will also be divisible by 2.

(vi) Now, from theorem, x and y will have 2 as a common factor. But, it is opposite to fact that x and y are co-prime.

(vii) Hence, we can conclude $\sqrt{2}$ is irrational.

For Example: Prove that $\sqrt{3}$ is irrational.

We shall start by assuming $\sqrt{3}$ as rational. In other words, we need to find integers x and y such that $\sqrt{3} = x/y$.

Let x and y have a common factor other than 1, and so we can divide by that common factor and assume that x and y are coprime. So, $y\sqrt{3} = x$.

Squaring both side, we get, $3y^2 = x^2$.

Thus, x^2 is divisible by 3, and by theorem we can say that x is also divisible by 3.

Hence, x = 3z for some integer z.

Substituting a, we get, $3x^2 = 9z^2$ i.e. $y^2 = 3z^2$; which means y^2 is divisible by 3, and so y will also be divisible by 3.

Now, from theorem, x and y will have 3 as a common factor. But, it is opposite to fact that x and y are co-prime.

Hence, we can conclude $\sqrt{3}$ is irrational.

For Example: Prove that $6 + \sqrt{2}$ is irrational.

Let us assume $6 + \sqrt{2}$ to be rational.

Therefore, we must find two integers a, b (b \neq 0) such that

 $6 + \sqrt{2} = a/b$ i.e. $\sqrt{2} = a/b - 6$.

Since, a and b are integers, a/b - 6 is also rational and hence $\sqrt{2}$ must be rational.

Now, this contradicts the fact that $\sqrt{2}$ is irrational.

Hence, $6 + \sqrt{2}$ is irrational.

(5) Revisiting Rational Numbers and Their Decimal Expansions:

Theorem 1: Let x be a rational number whose decimal expansion terminates. Then x can be

expressed in the form, p/q where p and q are co-prime, and the prime factorisation of q is of the form $2^n 5^m$, where n, m are non-negative integers.

For Example: $13/125 = 13/5^3 = (13 \times 2^3)/(2^3 \times 5^3) = 104/10^3 = 0.104$

Theorem 2: Let x = p/q be a rational number, such that the prime factorisation of q is of the form $2^n 5^m$, where n, m are non-negative integers. Then x has a decimal expansion which terminates.

Theorem 3: Let x = p/q be a rational number, such that the prime factorisation of q is not of the form $2^n 5^m$, where n, m are non-negative integers. Then, x has a decimal expansion which is non-terminating repeating (recurring).

For Example: Without actually performing the long division, state whether 6/15 will have a terminating decimal expansion or a non-terminating repeating decimal expansion. The prime factorisation of 6/15 can be written as $6/15 = (2 \times 3) / (3 \times 5) = 2/5$ Here, the denominator is of the form 5^n . Hence, decimal expansion of 6/15 is terminating.

For Example: Write down the decimal expansions of 17/8. The decimal expansion of 17/8 is

For Example: The following real number has decimal expansions as given below. Decide whether it is rational or not. If it is rational, and of the form, p/q what can you say about the prime factors of q? 43.123456789

Here, as the decimal expansion is non-terminating recurring, the given number is a rational

number of the form p/q.

Moreover, q is not of the form $2^n 5^m$, hence, prime factors of q will also have factors other than 2 or 5.